LTPDA Toolbox™ | contents | ![]() ![]() |
At this point we have all the data we need to perform a linear fir to the IFO output data. We start by loading the data we need that we have produced in the previous sections. In particulr:
odat = matrix('output.mat'); idat = matrix('input.mat'); wf = matrix('whitening_filter.mat'); H = ssm('fitting_model.mat');
Then we define input ports, output ports and parameters names.
% define input port-names for the different experiments InputNames = {{'GUIDANCE.ifo_x1'}, {'GUIDANCE.ifo_x12'}}; % define output port-names for the different experiments OutputNames = {{'DELAY_IFO.x1', 'DELAY_IFO.x12'}, {'DELAY_IFO.x1','DELAY_IFO.x12'}}; % parameters names params = {'FEEPS_XX', 'CAPACT_TM2_XX', 'IFO_X12X1', 'EOM_TM1_STIFF_XX', 'EOM_TM2_STIFF_XX'};
% Input signals is1ao = idat(1).getObjectAtIndex(1); % extract the AOs is2ao = idat(2).getObjectAtIndex(2); iS = collection(is1ao, is2ao); % put inputs inside a collection % set numerical derivative step as 1% of the nominal values diffStep = [1, 1, 1e-4, 1.935e-06, 2.0e-6] .* 0.01;
We have all the data we need for starting the fit. We start defining a 'plist' with all the parameters we need for the current fit session.
plfit = plist(... 'FitParams', params ,... 'diffStep', diffStep, ... 'Model', H, ... 'Input', iS, ... 'INNAMES', InputNames, ... 'OUTNAMES', OutputNames, ... 'WhiteningFilter', wf, ... 'tol', 1, ... 'Nloops', 10, ... 'Ncut', 1e3);
fpars = linfitsvd(odat, plfit);
If you want more information about 'linfitsvd' you have to type in MATLAB command line:
help matrix/linfisvd
Default |
|||
---|---|---|---|
no description | |||
Key | Default Value | Options | Description |
MODEL | [] | none | System model. It have to be parametric. A matrix of smodel objects or a ssm object |
INNAMES | {} [0x0] | none | A cell array containing cell arrays of the input ports names for each experiment. Used only with ssm models. |
OUTNAMES | {} [0x0] | none | A cell array containing cell arrays of the output ports names for each experiment. Used only with ssm models. |
FITPARAMS | {} [0x0] | none | A cell array with the names of the fit parameters |
INPUT | [] | none | Collection of input signals |
WHITENINGFILTER | [] | none | The multichannel whitening filter. A matrix object of filters |
NLOOPS | 1 | none | Number of desired iteration loops. |
NCUT | 100 | none | Number of bins to be discharged in order to cut whitening filter transients |
TOL | 1 | none | Convergence threshold for fit parameters |
DIFFSTEP | [] | none | Numerical differentiation step for ssm models |
We are now ready to save our fit results.
fpars.save('fit_linear.mat');
![]() |
Building whitening filters | Results and Comparison | ![]() |
©LTP Team