Skip to content

Can LISA science be done from the ground?

No. Both ground motion and time variations in familiar Newtonian gravity from spurious mass motions on the Earth prevent observations below about 1 Hz on the ground. It is necessary to make measurements in space in order to observe many of the important astrophysical sources throughout the Universe.

What are gravitational waves?

Gravitational waves are ripples in the fabric of space-time generated by some of the most powerful astrophysical events – such as collisions of black holes and exploding stars. Gravitational waves travel at the speed of light through the universe. They allow us to explore the dark side of the universe.

LIGO and other ground-based interferometers are enormously complex, isn’t attempting this in space too difficult?

Since gravitational waves are the stretching of spacetime itself, they have the interesting property that the measured displacement between two reference objects scales with the original separation between those objects. In other words, if there is more spacetime to stretch, the total stretch is larger. LISA’s arms are roughly a million times longer than LIGO’s, which means that a gravitational wave of the same amplitude will produce displacements that are roughly a million times larger in LISA. The total displacement is still small, on the order of picometers (one picometer = one trillionth of a meter) but is well within the range of modern metrology techniques. From the metrology perspective, the LISA measurement challenge is “easier” than that of LIGO, which is important given that it has to be robust enough for spaceflight as well as be able to be operated from far away.

How precisely does the distance between the LISA satellites need to be maintained?

The gravitational waves that LISA is designed to observe have typical timescales of hours. So long as the distance between the satellites is smoothly changing over these time scales, the gravitational waves can be observed as an additional modulation on top of this smooth change. Each satellite is in an independent Keplerian orbit around the Sun with the plane of the triangle inclined at 60 degrees to the plane of the ecliptic. Over the course of the mission, the nominal 2.5 million kilometer distance between each satellite will vary by hundreds of thousands of kilometers. LISA will be able to measure the absolute distance between the satellites to a few centimeters and will measure hour-scale fluctuations at the level of several picometers (1pm = 1 trillionth of a meter), the level required to detect gravitational waves.

LIGO has already found gravitational waves, why do we need LISA?

Gravitational wave science is about much more than just verifying the existence of the waves themselves. Long before LIGO made its first detection in 2015, the consensus amongst most physicists was that gravitational waves were real. The real power of gravitational waves is as a new tool for understanding our Universe. The early results from LIGO have already demonstrated this potential by uncovering what appears to be a new population of heavy black holes as well as determining the origin of heavy elements in the Universe through observations of a neutron star merger that was also observed by a large number of electromagnetic telescopes. Since LISA observes in an entirely separate band from LIGO, it can help answer different questions such as: “How did the massive black holes at the centers of galaxies form and grow?, “How have stars in our Milky Way evolved and died?”, and “Is general relativity the correct description of gravity and black holes?”

How can LISA observe so many sources simultaneously? Won’t there be a source confusion problem?

At any one moment, LISA will be sensing gravitational waves from millions of individual sources. The vast majority of these will be binary systems of compact objects in the Milky Way, but signals will also be received from extragalactic sources such as the mergers of massive black holes. Each of these signals has a distinct waveform that depends on the astrophysical properties of the source (masses, spins, orientations, positions, etc.). Thanks to extensive work in theory and modeling, we have very good templates for these sources which we can compare to the LISA data and extract individual signals using a technique known as matched filtering. The entire LISA data set is processed as a hierarchical global fit, where individual sources are added and subtracted to improve the overall fit. The most significant sources are easily identified and characterized. As the signal strength decreases, a point is eventually reached where no additional sources can be confidently extracted. Simulations with mock LISA data suggest that tens of thousands of individual signals will be identified in the full LISA data set with the remaining Milky Way binaries producing an unresolved, but still detected, foreground of gravitational waves in the lower part of the LISA sensitivity band. The LISA community is continuing to conduct mock data challenges of increasing sophistication to hone the data analysis techniques that will be used to solve this problem.

What makes the Gravitational Universe so exciting?

The Gravitational Universe is a new window in astronomy. Powerful sources of gravitational waves are being used to probe a universe that cannot be explored by other means. Significant advances in astronomy have been made by looking at the Universe using electromagnetic radiation as a probe. But with gravitational waves, we can also study the dark universe, analogous to listening for objects that do not produce light. LISA will enable us to explore the dark universe through gravitational waves.

What can we learn from the observed signals?

The gravitational waves that LISA will discover include ultra-compact binaries in our Galaxy, supermassive black hole mergers, and extreme mass ratio inspirals, among other possibilities. LISA will be the first to explore gravitational waves in the frequency range of 0.1 milliHertz to 0.1 Hertz.

LIGO and other ground-based interferometers are enormously complex, isn’t attempting this in space too difficult?

Since gravitational waves are the stretching of spacetime itself, they have the interesting property that the measured displacement between two reference objects scales with the original separation between those objects. In other words, if there is more spacetime to stretch, the total stretch is larger. LISA’s arms are roughly a million times longer than LIGO’s, which means that a gravitational wave of the same amplitude will produce displacements that are roughly a million times larger in LISA. The total displacement is still small, on the order of picometers (one picometer = one trillionth of a meter) but is well within the range of modern metrology techniques. From the metrology perspective, the LISA measurement challenge is “easier” than that of LIGO, which is important given that it has to be robust enough for spaceflight as well as be able to be operated from far away.

What will we learn from the Gravitational Universe?

Gravitational waves are ripples in the fabric of space-time generated by some of the most powerful astrophysical events – such as exploding stars and collisions of two black holes at the centres of galaxies. Gravitational waves travel at the speed of light through the universe, unhindered by intervening mass – to gravitational waves the universe is transparent. That is why gravitational waves are the cosmic messengers that allow us to explore the so far dark side of the universe.