Pole zero model representation


Creating a pole zero model

Let's build a pole zero model with the following characteristics:

Before being able to create the model, you will need first to define the poles and zeros that define your model. Both poles and zeros are defined using the pz constructor. For example the pole at f = 10 Hz with Q = 2 is defined as,

  >> p1 = pz(10,2)
------ pz/1 -------
      f: 10
      q: 2
     ri: [15.707963267949+i*60.8366801396042;15.707963267949-i*60.8366801396042]
version: $Id: ltpda_training_topic_4_1_1_content.html,v 1.1 2009/02/18 16:15:29 miquel Exp $
-------------------

and two zeros with the following commnads

>> z1 = pz(1)
------ pz/1 -------
      f: 1
      q: NaN
     ri: -6.28318530717959
version: $Id: ltpda_training_topic_4_1_1_content.html,v 1.1 2009/02/18 16:15:29 miquel Exp $
-------------------
>> z2 = pz(0.1)
------ pz/1 -------
      f: 0.1
      q: NaN
     ri: -0.628318530717959
version: $Id: ltpda_training_topic_4_1_1_content.html,v 1.1 2009/02/18 16:15:29 miquel Exp $
-------------------

Now we can build our pole zero model by typing

>> m = pzmodel(5,p1,[z1 z2])
---- pzmodel 1 ----
    name: None
    gain: 5
   delay: 0
  iunits: []
  ounits: []
pole 001: (f=10 Hz,Q=2)
zero 001: (f=1 Hz,Q=NaN)
zero 002: (f=0.1 Hz,Q=NaN)
-------------------

and we can easily obtain the response of this transfer function by using the resp method.

>> resp(m)

The result is the figure shown below.

Response of a pzmodel




©LTP Team