LTPDA Toolbox

@ LTPDA Toolbox

e | TPDA Toolbox
o Getting Started with the LTPDA Toolbox
= What is the LTPDA Toolbox

= System Requirements
= Setting-up MATLAB
= Additional 3rd-party software
= Trouble-shooting
Examples
Introducing LTPDA Objects
= Creating LTPDA Obijects
= Working with LTPDA objects
Analysis Objects
= Creating Analysis Objects
= Saving Analysis Objects
= Plotting Analysis Objects
Parameter Lists
= Creating Parameters
= Creating lists of Parameters
Simulation/modelling
= Built-in models of LTPDA
= Built-in Analysis Object Models
= Built-in Statespace Models
= Generating model noise
= Franklin noise-generator
= Noise generation with given CSD
= noisegenlD
= noisegen2D
= Multichannel Noise Generator
= Statespace models
= [ntroduction to Statespace Models with LTPDA
= Building Statespace models
= Building from scratch
= Building from built-in models
= Modifying systems
= Assembling systems
= Simulations
= Transfer Function Modelling
= Pole/Zero representation
= Creating poles and zeros
= Building a model
= Model helper GUI
Sum of partial fractions representation
Rational representation
Converting models between different representations
Converting models to digital filters
o Signal Pre-processing in LTPDA
= Downsampling data
= Upsampling data
= Resampling data

[e]

[e]

[e]

[e]

[e]

http://www.lisa.aei-hannover.de/ltpda/usermanual/helptoc.html[10/08/2009 16:22:30]

LTPDA Toolbox

= [nterpolating data
Spikes reduction in data
Data gap filling

Noise whitening
= whitenlD

= whiten2D

o Signal Processing in LTPDA
= Digital Filtering
» |IR Filters
= FIR Filters
= Discrete Derivative
= Spectral Estimation
= |ntroduction
Spectral Windows
= What are LTPDA spectral windows?
= Create spectral windows
= Visualising spectral windows
= Using spectral windows
= Power spectral density estimates

= Cross-spectral density estimates
= Cross coherence estimates

= Transfer function estimates

= | 0g-scale power spectral density estimates
= | 0g-scale cross-spectral density estimates
= | 0g-scale cross coherence density estimates
= | 0g-scale transfer function estimates
= Fitting Algorithms

= Polynomial Fitting
= Time domain Fit

» Z-Domain Fit
= S-Domain Fit
o Graphical User Interfaces in LTPDA
= The LTPDA Launch Bay
= The LTPDA Workbench
= Loading the LTPDA Workbench
= Mouse and keyboard actions
= The canvas
= Building pipelines by hand
= Block types
= Adding blocks to the canvas
= Setting block properties and parameters
= Connecting blocks
= Creating subsystems
= Using the Workbench Shelf
= Accessing the shelf
= Creating shelf categories
= Adding and using shelf subsystems
= Importing and exporting shelf categories
= Execution plans
= Editing the plan
= Linking pipelines
= Building pipelines programatically
= EXxecuting pipelines
= The LTPDA Repository GUI

http://www.lisa.aei-hannover.de/ltpda/usermanual/helptoc.html[10/08/2009 16:22:30]

LTPDA Toolbox

The pole/zero model helper
The Spectral Window GUI
The constructor helper
The LTPDA object explorer
The quicklook GUI
o Working with an LTPDA Repaository
= What is an LTPDA Repaository
= Connecting to an L TPDA Repository
= Submitting LTPDA objects to a repository
= Exploring an LTPDA Repaository
= Retrieving LTPDA objects from a repository
= Using the L TPDA Repository GUI
= Connecting to a repository
= Submitting objects to a repository
= Querying the contents of a repository
= Retrieving objects and collections from a repository

o Class descriptions
= ao Class

= ssm Class
s mfir Class
= miir Class

= pzmodel Class
= parfrac Class
= rational Class
= timespan Class
= plist Class

= specwin Class
= time Class

= pz (pole/zero) Class
» minfo Class

= history Class

= provenance Class

= param Class
= unit Class

= cdata Class
s fsdata Class
= tsdata Class

= xydata Class
= xyzdata Class
= Constructor Examples
= Constructor examples of the AO class
= Constructor examples of the MFIR class
= Constructor examples of the MIIR class
= Constructor examples of the PZMODEL class
= Constructor examples of the PARFRAC class
= Constructor examples of the RATIONAL class
= Constructor examples of the TIMESPAN class
= Constructor examples of the PLIST class
= Constructor examples of the SPECWIN class
o Functions - By Category
o LTPDA Training Session 1
= Topic 1 - The basics of LTPDA
= |ntroducing Analysis Objects
= Making AOs

http://www.lisa.aei-hannover.de/ltpda/usermanual/helptoc.html[10/08/2009 16:22:30]

LTPDA Toolbox

Making a time-series AO
= Basic math with AOs
= Saving and loading AOs
= Constructing AOs from data files
= Writing LTPDA scripts
= |[FO/Temperature Example - Introduction
= Topic 2 - Pre-processing of data
= Downsampling a time-series AO
= Upsampling a time-series AO
= Resampling a time-series AO
= |Interpolation of a time-series AO
= Remove trends from a time-series AO

= Whitening noise
= Select and find data from an AO
= Split and join AOs
= |[FO/Temperature Example - Pre-processing
= Topic 3 - Spectral Analysis
= [ntroducing Spectral Analysis
= Power Spectral Density estimation
= Example 1: Simply PSD
= Example 2: Windowing data
= Example 3: Log-scale PSD on MDC1 data
= Empirical Transfer Function estimation
= |[FO/Temperature Example - Spectral Analysis
= Topic 4 - Transfer function models and digital filtering
= Create transfer function models in s domain
= Pole zero model representation
= Partial fraction representation
= Rational representation
= Transforming models between representations
= Modelling a system
= How to filter data
= By discretizing transfer function models
= By defining filter properties
= |[FO/Temperature Example - Simulation
= Topic 5 - Model fitting
= System identification in z-domain
Generation of noise with given psd
Fitting time series with polynimials
Non-linear least square fitting of time series

= |[FO/Temperature Example - signal subtraction
o LTPDA Web Site

http://www.lisa.aei-hannover.de/ltpda/usermanual/helptoc.html[10/08/2009 16:22:30]

http://www.lisa.uni-hannover.de/ltpda/

LTPDA Toolbox (LTPDA Toolbox)

LTPDA Toolbox contents [€]

LTPDA Toolbox

Welcome to LTPDA!

LTPDA provides a framework for doing object-oriented data analysis. LTPDA objects can
represent typical data structures needed for data analysis, for example, time-series data or
digital filters. These objects can then flow through a data analysis pipeline where at each stage
they record the actions. The output objects of a data analysis pipeline therefore contain a full
history of the processing steps that have been performed in reaching this point. This history
can be view to allow others to understand how results were arrived at, but it can also be used

to recreate the result.

[®]IFO/Temperature Example - signal subtraction Getting Started with the LTPDA Toolbox [#]

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/ltpda_top.html[10/08/2009 16:22:35]

LTPDA Toolbox (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/ltpda_top.html[10/08/2009 16:22:35]

Getting Started with the LTPDA Toolbox (LTPDA Toolbox)

LTPDA Toolbox

contents IEI

Getting Started with the LTPDA Toolbox

What is the LTPDA Toolbox?

System Requirements

Setting up MATLAB to work
with LTPDA

Starting the LTPDA Toolbox

LTPDA Toolbox

OLTP Team

Overview of the main functionality of the Toolbox

Supported platforms, MATLAB versions, and required
toolboxes.

Installing and editing the LTPDA Startup file.

What is the LTPDA Toolbox

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/gettingstarted.html[10/08/2009 16:22:41]

Getting Started with the LTPDA Toolbox (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/gettingstarted.html[10/08/2009 16:22:41]

What is the LTPDA Toolbox (LTPDA Toolbox)

LTPDA Toolbox contents [€]

What is the LTPDA Toolbox

This section covers the following topics:

e Qverview
e Features of the LTPDA Toolbox

e Expected Background for Users

Overview

The LTPDA Toolbox is a MATLAB® Toolbox designed for the analysis of data from the LISA
Technology Package (part of the LISA Pathfinder Mission). However, the toolbox can be used for
any general purpose signal processing, and is particularly useful for analysis of typical lab-
based experiments.

The Toolbox implements accountable and reproducible data analysis within MATLAB®.

With the LTPDA Toolbox you operate with LTPDA Objects. An LTPDA Object captures more than
just the data from a particular analysis: it also captures the full processing history that led to
this particular result, as well as full details of by whom and where the analysis was performed.

Features of the LTPDA Toolbox
The LTPDA Toolbox has the following features:

e Create and process multiple LTPDA Objects.

e Save and load objects from XML files.

» Plot/view the history of the processing in any particular object.
e Submit and retrieve objects to/from an LTPDA Repository.

» Powerful and easy to use Signal Processing capabilities.

Note LTPDA Repositories are external to MATLAB and need to be set up independently.

Expected Background for Users
MATLAB

This documentation assumes you have a basic working understanding of MATLAB. You need to
know basic MATLAB syntax for writing your own m-files.

[#] Getting Started with the LTPDA Toolbox System Requirements

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/whatis.html[10/08/2009 16:22:46]

What is the LTPDA Toolbox (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/whatis.html[10/08/2009 16:22:46]

System Requirements (LTPDA Toolbox)

LTPDA Toolbox contents [€]

System Requirements

The LTPDA Toolbox works with the systems and applications described here:

e Platforms
e MATLAB and Related Products

e Additional Programs

Platforms

The LTPDA Toolbox is expected to run on all of the platforms that support MATLAB, but you
cannot run MATLAB with the -nojvm startup option.

MATLAB and Related Products

The LTPDA Toolbox requires MATLAB. In addition, the following MathWorks Toolboxes are
required for some features:

Component Version Comment
MATLAB >7.6 (R2008a)
Signal Processing Toolbox >6.9
Database Toolbox >3.4.1 Needed to
interact
with an
LTPDA
repository
Symbolic Math Toolbox >3.2.3
Optimization Toolbox >4.0
[#]What is the LTPDA Toolbox Setting-up MATLAB [#]
©LTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/sysreqts.html|[10/08/2009 16:22:52]

System Requirements (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/sysreqts.html|[10/08/2009 16:22:52]

Setting-up MATLAB (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Setting-up MATLAB

Setting up MATLAB to work properly with the LTPDA Toolbox requires a few steps:

e Add the LTPDA Toolbox to the MATLAB path

e Starting LTPDA Toolbox
e Edit the LTPDA Preferences

Add the LTPDA Toolbox to the MATLAB path

After downloading and un-compressing the LTPDA Toolbox, you should add the directory
I'tpda_toolbox to your MATLAB path. To do this:

e File -> Set Path...

* Choose "Add with Subfolders" and browse to the location of I1tpda_toolbox

e "Save" your new path. MATLAB may require you to save your new pathdef.m to a hew
location in the case that you don't have write access to the default location. For more
details read the documentation on "pathdef" (>> doc pathdef).

Starting LTPDA Toolbox

To start using the LTPDA Toolbox, execute the following command on the MATLAB terminal:

Itpda_startup

This should launch the LTPDA Launchbay, and you should see the LTPDA logo on the MATLAB
terminal. When you run this for the first time, you will also be presented with the LTPDA
Preferences GUI from where you can edit the preferences for the toolbox (see below).

If everything has gone well, you should be able to run a set of built-in tests by doing:

run_tests

This will run about 100 test scripts. These test scripts can be found in $1tpda_toolbox/examples
and serve as useful example scripts.

In order to automatically start the LTPDA Toolbox when MATLAB starts up, add the command
Itpda_startup to your own startup.m file. See >> doc startup for more details on installing and
editing your own startup.m file.

Edit the LTPDA Preferences

The LTPDA Toolbox comes with a default set of starting preferences. These may need to be
edited for your particular system (though most of the defaults should be fine). To edit the
preferences, you first need to have the LTPDA toolbox installed as described above, then run
the command

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/setup.htmI[10/08/2009 16:22:58]

Setting-up MATLAB (LTPDA Toolbox)

LTPDAprefs

or click on the "LTPDA Preferences" button on the launchbay. You should see the following GUI:

P W W

LTPDA Preferences

— Cateqores

Models

Time

Repositony
Extemal Programs
Miscelaneous

— Seftinas

Vermose level | PROC1

Wrap strings B

Wrap legend strings 10

Apply

g

Edit all the preferences you want and then click apply to save the preferences. These new
preferences will be used each time you start LTPDA.

[®]System Requirements

©OLTP Team

Additional 3rd-party software

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/setup.htmI[10/08/2009 16:22:58]

Additional 3rd-party software (LTPDA Toolbox)

LTPDA Toolbox

contents IE'

Additional 3rd-party software

Some features of the LTPDA Toolbox require additional 3rd-party software to be installed.
These are listed below.

Graphviz

In order to use the commands listed below, the Graphviz package must be installed.

Method Description

history/dotview Convert a history object to a tree-diagram using the DOT
interpreter.

ssm/dotview Convert the statespace model object to a block-diagram
using the DOT interpreter.

report Generates a HTML report about the input objects which
includes a DOT block-diagram of the history.

The following installation guidelines can be used for different platforms

e |nstallation Guide for Windows
e Installation ide for Ma

e |nstallation Guide for Linux

Windows

X

1. Download the relevant package from Downloads section of www.graphviz.org.
2. Install the package by following the relevant instructions.
3. Set the two relevant preferences with your LTPDA Preferences Panel

1. For this start the LTPDApres

>> LTPDAprefs

2. or press the "LTPDA Preferences" button on the LTPDA Launch Bay

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/additional_progs.htmlI[10/08/2009 16:23:08]

matlab:web('http://www.graphviz.org/')
matlab:web('http://www.graphviz.org/')

Additional 3rd-party software (LTPDA Toolbox)

w+ LTPDA Launch Bay

A

LTPDA Workbench |

Vow S N

| LTPDA Prefarances

& L TEEEEEEES
LTFDA REPO CLI

L TS R S S .

pzmodeal helpar

spacwin GU|
s 5 || [—-] [Y
' Constructor Halpear »
R T i a Wy
Object Bxplorar
.

Cluickl ozl]

AR T R S

Signal Builder
[

3. Select on your LTPDA Preferences Panel the category "External Programs"
w LTPDA Preferences

—Categories ——— —Settings

Display sl DOT binary | browse |
Models

Tirme DOT format | pdf

Fepaository

External Programs
Miscellaneous

4. Set the path to the 'dot.exe' binary in the editable text field "DOT binary". If you
perform the default installation, this should be something like:
'‘c:\Program Files\Graphviz2.20\bin\dot.exe';

5. Define in the editable text field "DOT format" the graphics format to output. See
formats for available formats. To view the final graphics file you must have a suitable
viewer for that graphics format installed on the system. For example, to output as
PDF

Mac OS X

1. Choose from:
1. From graphviz:
= Download the relevant package from Downloads section of www.graphviz.org.
= |nstall the package by following the relevant instructions.
2. From Fink:
= |f you use the fink package manager, in a terminal: > fink install graphviz
2. Set the two relevant preferences with your LTPDA Preferences Panel.
1. Start the LTPDA Preferences Panel. For this follow the step 3.1 or 3.2 of the window
installation.

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/additional_progs.htmlI[10/08/2009 16:23:08]

matlab:web('http://www.graphviz.org/doc/info/output.html')
matlab:web('http://www.graphviz.org/')

Additional 3rd-party software (LTPDA Toolbox)

2. Set the path to the 'dot' binary in the editable text field "DOT binary". If you perform
the default installation from fink, this should be something like:
'/sw/bin/dot’

3. Define in the editable text field "DOT format" the graphics format to output. See
formats for available formats. To view the final graphics file you must have a suitable
viewer for that graphics format installed on the system. For example, to output as
PDF

Linux

1. Choose from:
1. From graphviz:
= Download the relevant package from Downloads section of www.graphviz.org.
= |nstall the package by following the relevant instructions.
2. From terminal (Ubuntu):
= Please type in a terminal: >sudo apt-get install graphviz
3. From graphical package manager like YaSt, Synaptic, Adept, ...
= Start your graphical package manager
= Search for the >graphviz package
= Select the package and all depending packes and install these packages.
2. Set the two relevant preferences with your LTPDA Preferences Panel.

1. Start the LTPDA Preferences Panel. For this follow the step 3.1 or 3.2 of the window
installation.

2. Set the path to the 'dot' binary in the editable text field "DOT binary". If you perform
the default installation from the terminal, this should be something like:
'/usr/bin/dot’;
even 'dot' without the path should work

3. Define in the editable text field "DOT format" the graphics format to output. See
formats for available formats. To view the final graphics file you must have a suitable
viewer for that graphics format installed on the system. For example, to output as
PDF

3. Define a programm in MATLAB which opens the file.
1. The default programm to open a pdf file is the Acrobat Reader
2. Define another program under File -> Preferences -> Help -> PDF Reader

[€]Setting-up MATLAB Trouble-shooting

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/additional_progs.htmlI[10/08/2009 16:23:08]

matlab:web('http://www.graphviz.org/doc/info/output.html')
matlab:web('http://www.graphviz.org/')
matlab:web('http://www.graphviz.org/doc/info/output.html')

Trouble-shooting (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Trouble-shooting

A collection of trouble-shooting steps.

1. Java Heap Problem

When loading or saving large XML files, MATLAB sometimes reports problems due to
insufficient heap memory for the Java Virtual Machine.

You can increase the heap space for the Java VM in MATLAB 6.0 and higher by creating a
java.opts file in the $MATLAB/bin/$ARCH (or in the current directory when you start MATLAB)
containing the following command: -Xmx$MEMSI1ZE

Recommended:

-Xmx536870912

which is 512Mb of heap memory.

An additional workaround reported in case the above doesn't work: It sometimes happens
with MATLAB R2007b on WinXP that after you create the java.opts file, MATLAB won't start
(it crashes after the splash-screen).

The workaround is to set an environment variable MATLAB_RESERVE_L0=0.

This can be set by performing the following steps:

Select start->Settings->Control Panel->System

Select the "Advanced" tab

On the bottom, center, click on "Environment variables"

Click "New" (choose the one under "User variables for Current User")
Enter

Variable Name: MATLAB_RESERVE_LO

Variable Value: 0

6. Click OK as many times as needed to close the window

U WN =

Then edit/create the java.opts file as described above. You can also specify the units (for
instance -Xmx512m or -Xmx524288k or -Xmx536870912 will all give you 512 Mb).

2. LTPDA Directory Name

Problems have been seen on Windows machines if the LTPDA toolbox directory name
contains ".". In this case, just rename the base LTPDA directory before adding it to the
MATLAB path.

3. Problems to execute MEX files

User with the operating system "Windows XP" will get trouble if you want to execute MEX
files. This happens if you are useing for example the methods 'detrend’, 'smoother', 'lpsd’,

You will get the following error:

??? Invalid MEX-file 'C:\Itpda_toolbox\Itpda\src\Itpda_dft\ltpda_dft.mexw32"
This application has failed to start because the application configuration is incorrect.
Reinstalling the application may fix this problem.

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/trouble_shooting.htmI[10/08/2009 16:23:12]

Trouble-shooting (LTPDA Toolbox)

You can solve this problem by installing the Microsoft Visual C++ 2008 Redistributable
Package. This is necessary because all the MEX files are compiled with Microsoft Visual

C++ 2008. You can install this package from the LTPDA toolbox or from the official
Microsoft web page.

o LTPDA toolbox
= Windows 32 bit
= Windows 64 bit

You will find the files in the directory: $LTPDA_TOOLBOX_DIR/ltpda/src

o Official Microsoft web page
= Windows 32 bit
= Windows 64 bit

[®]Additional 3rd-party software Examples

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/trouble_shooting.htmI[10/08/2009 16:23:12]

matlab:web(['file:///' which('vcredist_x86.exe')])
matlab:web(['file:///' which('vcredist_x64.exe')])
matlab:web('http://www.microsoft.com/downloads/details.aspx?FamilyID=9b2da534-3e03-4391-8a4d-074b9f2bc1bf&displaylang=en')
matlab:web('http://www.microsoft.com/downloads/details.aspx?familyid=90548130-4468-4BBC-9673-D6ACABD5D13B&displaylang=en')

Examples (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Examples

General

The directory examples in the LTPDA Toolbox contains a large number of example scripts
that demonstrate the use of the toolbox for scripting.

You can execute all of these tests by running the command run_tests

Constructor examples

Constructor examples of the AO class
Constructor examples of the MFIR class
Constructor examples of the MIIR class
Constructor examples of the PZMODEL class
Constructor examples of the PARFRAC class
Constructor examples of the RATIONAL class
Constructor examples of the TIMESPAN class
Constructor examples of the PLIST class
Constructor examples of the SPECWIN class

[®] Trouble-shooting Introducing LTPDA Objects [#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/examplesindex.html|[10/08/2009 16:23:15]

Examples (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/examplesindex.html|[10/08/2009 16:23:15]

Introducing LTPDA Objects (LTPDA Toolbox)

LTPDA Toolbox contents

Introducing LTPDA Objects

The LTPDA toolbox is object oriented and as such, extends the MATLAB object types to many others. All data processing is done using
objects and methods of those classes.

For full details of objects in MATLAB, refer to MATLAB Classes and Object-Oriented Programming.

LTPDA Classes

Various classes make up the object-oriented infrastructure of LTPDA. The figure below shows all the classes in LTPDA. All classes are
derived from the base class, Itpda_obj. The classes then fall into two main types deriving from the classes Itpda_nuo and Itpda_uo.

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/objects_intro.html[10/08/2009 16:23:18]

matlab:web(['jar:file:///' matlabroot '/help/techdoc/help.jar!/matlab_oop/ug_intropage.html'])

Introducing LTPDA Objects (LTPDA Toolbox)

L

®

e Classes used by the user

e Classes not used by the user

MATLAR handle

1

hpda_obi

1

hpda_nuo

T

#

datalD

T

=
=

o N

hpda_uo

i

T

hpda_tf

dataiD

T

htpda_filter

- =

-
-
-

The left branch, 1tpda_nuo, are termed 'non-user objects'. These objects are not typically accessed or created by users. The right branch,
Itpda_uo, are termed 'user objects'. These objects have a 'name' and a 'history' property which means that their processing history is

tracked through all LTPDA algorithms. In addition, these 'user objects' can be saved to disk or to an LTPDA repository.

The objects drawn in green are expected to be created by users in scripts or on the LTPDA GUI.

Details of each class are given in:

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/objects_intro.html[10/08/2009 16:23:18]

Introducing LTPDA Objects (LTPDA Toolbox)
|analysis object class
|statespace model class
|rational class

|partial fraction class
|po|e[zero model class

|iir filter class

|fir filter class
|timespan class
|parameter list class
|spgg1ral window class

|time class

|
|
|
|
|
|
|
|
|
}
Ipole/zero class }
|
|
|
|
|
|
|
|
|

|method info class

|history class
|provenance class

|paramg1gr class
|unit class

|constant data class

|xy data class

|1img—§grig§ data class
|frequency—series data class
|xyz data class

Examples Creating LTPDA Objects

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/objects_intro.html[10/08/2009 16:23:18]

Creating LTPDA Objects (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Creating LTPDA Objects

Creating LTPDA objects within MATLAB is achieved by calling the constructor of the class of
object you want to create. Typically, each class within LTPDA has many possible constructor
calls which can produce the objects using different methods and inputs.

For example, if we want to create a parameter list object (plist), the help documentation of the
plist class describes the various constructor methods. Type help plist to see the
documentation.

Introducing LTPDA Objects Working with LTPDA objects

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/objects_create.htmI[10/08/2009 16:23:22]

Creating LTPDA Objects (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/objects_create.htmI[10/08/2009 16:23:22]

Working with LTPDA objects (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Working with LTPDA objects

The use of LTPDA objects requires some understanding of the nature of objects as
implemented in MATLAB.

For full details of objects in MATLAB, refer to MATLAB Classes and Object-Oriented
Programming. For convenience, the most important aspects in the context of LTPDA are
reviewed below.

e Calling object methods
e Setting object properties
e Copying objects

Calling object methods

Each class in LTPDA has a set of methods (functions) which can operate/act on instances of the
class (objects). For example, the AO class has a method psd which can compute the Power
Spectral Density estimate of a time-series AO.

To see which methods a particular class has, use the methods command. For example,

>> methods("ao")

To call a method on an object, obj.method, or, method(obj). For example,
>> b = a.psd

or

>> b psd(a)

Additional arguments can be passed to the method (a plist, for example), as follows:

>> b

a.psd(pl)

or

>> b psd(a, pl)

In order to pass multiple objects to a method, you must use the form

>> p = psd(al, a2, pl)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/objects_working.html[10/08/2009 16:23:24]

matlab:web(['jar:file:///' matlabroot '/help/techdoc/help.jar!/matlab_oop/ug_intropage.html'])
matlab:web(['jar:file:///' matlabroot '/help/techdoc/help.jar!/matlab_oop/ug_intropage.html'])

Working with LTPDA objects (LTPDA Toolbox)

Some methods can behave as modifiers which means that the object which the method acts on
is modified. To modify an object, just give no output. If we start with a time-series AO then
modify it with the psd method,

>> a
M: running ao/display
——————————— ao: a —-—————————-

name: none
creator: created by hewitson@bobmac.aei.uni-hannover.de[130.75.117.65] on MACI/7.6
(R2008a)/1.9.1 beta (R2008a)
escrlptlon
data: (0,-1.75921525387737) (0.1,-0.323940403980841) (0.2,1.70580759558634)
(0.3,0. 74566737561773) (0.4,-0. 386452719524098) .-

———————— tsdata 01 --—————-—-——-
fs: 10

X: 1 100 double

y: 1 100 double

xunits:

yunits: V
nsecs: 10
t0: 1970-01-01 00:00:00.000

hist: ao / ao / $ld: objects_working content_html,v 1.4 2009/03/19 19:11:14 ingo Exp
$-->$1d: objects_working_content.html,v 1.4 2009/03/19 19:11:14 ingo Exp $

mfilename:

mdlfilename:

Then call the psd method:

> a. psd(pD)

running ao/psd
using default Nfft of 100
reset window to BH92(100)
using default overlap of 66.1%

running ao/displa

——————————— ao: PSD(@) ----——————-

name: PSD(a)

creator: created by hewitson@bobmac.aei.uni-hannover.de[130.75.117.65] on MACI/7.6
(R2008a)/1.9.1 beta (R2008a)

escription:

data: (0,0.0488141703757124) (0.1,0.109407517445348) (0.2,0.194309804548859)
(0.3,0. 45310907509%?%}) (%M% 0.65 807772380848) .-

——————————— sdata ————— -

fs: 10

X: [1 517, double

y: _I1 51], double

xunits: empty

yunits: V~2/Hz

t0: 1970-01-01 00:00:00.000

zgzgzv

hist: ao / psd / $1d: objects working content_html,v 1.4 2009/703/19 19:11:14 ingo Exp

mFilename:
mdIfilename:

then the object a is converted to a frequency-series AO.

This modifier behaviour only works with certain methods, in particular, methods requiring
more than one input object will not behave as modifiers.

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/objects_working.html[10/08/2009 16:23:24]

Working with LTPDA objects (LTPDA Toolbox)

Setting object properties

All object properties must be set using the appropriate setter method. For example, to set the
name of a IR filter object,

>> i = miir(Q);
>> ji.setName(“My Filter®);

Reading the value of a property is achieved by:

>> ji.name
ans =

My Filter

Copying objects

Since all objects in LTPDA are handle objects, creating copies of objects needs to be done
differently than in standard MATLAB. For example,

>> a
>> b

ao();
a;

in this case, the variable b is a copy of the handle a, not a copy of the object pointed too by the
handle a. To see how this behaves,

>> a ao();
>> b a;

>> b_setName('My Name™);
>> a.name

ans =

My Name

Copying the object can be achieved using the copy constructor:

>>
>>
>>
>>

ao();

ao(a);
-setName(“My Name~®);
-name

[V R e e

ans =

none

In this case, the variable b points to a new distinct copy of the object pointed to by a.

[€]Creating LTPDA Objects Analysis Objects [#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/objects_working.html[10/08/2009 16:23:24]

Analysis Objects (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Analysis Objects

Based on the requirement that all results produced by the LTP Data Analysis software must be
easily reproducible as well as fully traceable, the idea of implementing analysis objects (AO) as
they are described in S2-AEI-TN-3037 arose.

An analysis object contains all information necessary to be able to reproduce a given result. For
example

» which raw data was involved (date, channel, time segment, time of retrieval if data can be
changed later by new downlinks)

» all operations performed on the data

» the above for all channels of a multi-channel plot

The AO will therefore hold

e the numerical data belonging to the result
e the full processing history needed to reproduce the numerical result

The majority of algorithms in the LTPDA Toolbox will operate on AOs only (these are always
methods of the AO class) but there are also utility functions which do not take AOs as inputs,
as well as methods of other classes. Functions in the toolbox are designed to be as simple and
elementary as possible.

[«]Working with LTPDA objects Creating Analysis Objects [#]

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/ao_intro.htmI[10/08/2009 16:23:27]

Analysis Objects (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/ao_intro.htmI[10/08/2009 16:23:27]

Creating Analysis Objects (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Creating Analysis Objects

Analysis objects can be created in MATLAB in many ways. Apart from being created by the
many algorithms in the LTPDA Toolbox, AOs can also be created from initial data or
descriptions of data. The various constructors are listed in the function help: ao help.

Examples of creating AOs
The following examples show some ways to create Analysis Objects.

e Creating AOs from text files

e Creating AOs from XML or MAT files

e Creating AOs from MATLAB functions

» Creating AOs from functions of time

e Creating AOs from window functions

e Creating AOs from waveform descriptions
e Creating AOs from pole zero models

Creating AOs from text files.

Analysis Objects can be created from text files containing two columns of ASCIl numbers. Files
ending in ".txt' or ".dat' will be handled as ASCII file inputs. The first column is taken to be the
time instances; the second column is taken to be the amplitude samples. The created AO is of
type tsdata with the sample rate set by the difference between the time-stamps of the first two
samples in the file. The name of the resulting AO is set to the filename (without the file
extension). The filename is also stored as a parameter in the history parameter list. The
following code shows this in action:

>> a = ao("datal.txt"))
+ creating A0 from text file datal.txt
——————————— ao: a —-—-————————-

tag: -00001

name: datal

provenance: created by unknown@bob.local[192.168.2.100] on MACI/7.4 (R2007a)/0.2a
(R2007a) at 2007-06-23 19:46:05
comment:

data: tsdata / datal

giit: history / ao / $1d: ao.m,v 1.89 2008/03/07 10:02:29 ingo Exp

mfile:

As with most constructor calls, an equivalent action can be achieved using an input Parameter
List.

>> a = ao(plist("filename®, "datal.txt"))

Creating AOs from XML or .mat files

AOs can be saved as both XML and .MAT files. As such, they can also be created from these

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/ao_create.htmlI[10/08/2009 16:23:31]

matlab:doc('ao')

Creating Analysis Objects (LTPDA Toolbox)

files.

tag: -00001
name: save(datal,a.xml)

provenance: created by unknown@bob.local[192.168.2.100] on MACI/7.4 (R2007a)/0.2a
(R2007a) at 2007-06-23 20:00:21

comment:
data: tsdata / datal

giit: history /7 ao / $1d: ao.m,v 1.89 2008/03/07 10:02:29 ingo Exp
mfile:

Creating AOs from MATLAB functions

AOs can be created from any valid MATLAB function which returns a vector or matrix of values.

For such calls, a parameter list is used as input. For example, the following code creates an AO
containing 1000 random numbers:

>> a = ao(plist("fcn®, "randn(1000,1)%))
——————————— ao: a —-—-—-———————-

tag: -00001
name: randn(1000,1)

provenance: created by unknown@bob.local[192.168.2.100] on MACI/7.4 (R2007a)/0.2a
(R2007a) at 2007-06-23 20:04:52

comment:
data: cdata / randnslooo,l)

giit: history / ao $1d: ao.m,v 1.89 2008/03/07 10:02:29 ingo Exp
mfile:

Here you can see that the AO is a cdata type and the name is set to be the function that was
input.

Creating AOs from functions of time

AOs can be created from any valid MATLAB function which is a function of the variable t. For
such calls, a parameter list is used as input. For example, the following code creates an AO
containing sinusoidal signal at 1Hz with some additional Gaussian noise:

pl = plist();

pl = append(pl, "nsecs®, 100);

pl = append(pl, “fs®, 10); _) .

pl = append(pl, “tsfcn®, °“sin(2*pi*1*t)+randn(size(t))");
a = ao(ph)

——————————— ao: a ——-—————-———-

tag: -00001
name: TSfcn

provenance: created by unknown@bob.local[192.168.2.100] on MACI1/7.4 (R2007a)/0.2a
(R2007a) at 2007-06-24 06:47:19
comment:
data: tsdata / sin(2*pi*1*t)+randn(size?ﬁ%?
?i?t: history /7 ao / $1d: ao.m,v 1.89 2008/03/07 10:02:29 ingo Exp
mfile:

Here you can see that the AO is a tsdata type, as you would expect. Also note that you need to
specify the sample rate (fs) and the number of seconds of data you would like to have (nsecs).

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/ao_create.htmlI[10/08/2009 16:23:31]

Creating Analysis Objects (LTPDA Toolbox)

Creating AOs from window functions

The LTPDA Toolbox contains a class for designing spectral windows (see Spectral Windows). A
spectral window object can also be used to create an Analysis Object as follows:

>> W =

created:

specwin("Hanning", 1000)
Hanning

alpha: 0

psll:
rov:
nenbw:
w3db:
flatness:
WS :

ws2:

win:

31.5
50

1.5
1.4382
-1.4236
500
375
1000

-00001
name: Hanniqg
provenance: created by unknown@bob.local[192.168.2.100] on MACI1/7.4 (R2007a)/0.2a
(R2007a) at 2007-06-24 10:27:18
comment:
data:
hist:
mFile:

tag:

cdata / Hanning
history /7 ao /7 $1d: ao.m,v 1.89 2008/03/07 10:02:29 ingo Exp

The example code above creates a Hanning window object with 1000 points. The call to the AO
constructor then creates a cdata type AO with 1000 points. This AO can then be multiplied
against other AOs in order to window the data.

Creating AOs from waveform descriptions

MATLAB contains various functions for creating different waveforms, for example, square,
sawtooth. Some of these functions can be called upon to create Analysis Objects. The following
code creates an AO with a sawtooth waveform:

pl = plist();
pl = append(pl, "fs®, 100);
pl = append(pl, “nsecs”, 5);
pl = append(pl, “waveform®, "Sawtooth");
pl = append(pl, “f", 1);
pl = append(pl, °“width®, 0.5);
asaw = ao(pl)
——————————— ao: asaw ---------—--
tag: -00001
name: Sawtooth
provenance: created by unknown@bob.local[192.168.2.100] on MACI1/7.4 (R2007a)/0.2a
(R2007a) at 2007-06-24 10:37:51
comment:
data: tsdata / sawtooth(2*pi*1*t,0.5)
gift: history /7 ao / $1d: ao.m,v 1.89 2008/03/07 10:02:29 ingo Exp
mfile:

You can call the iplot function to view the resulting waveform:

iplot(asaw);

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/ao_create.htmlI[10/08/2009 16:23:31]

Creating Analysis Objects (LTPDA Toolbox)

Figure 1
File Edit View Insert Tools Desktop Window Help

DS kI RRm®[E| 0

R —
1 L
I
AR

Amplitude [V]

o

[——
|]
[——
|1
|
|1
|
| =]
i
|]

NIERIERIARVERIER
o

0 05 1 15 2 2.5 3 35 4 4.5
Time from Q000-01-00 000000 [s]

Creating AOs from pole zero models

When generating an AO from a pole zero model, the noise generator function is called. This a
method to generate arbitrarily long time series with a prescribed spectral density. The
algorithm is based on the following paper:

Franklin, Joel N.: Numerical simulation of stationary and non-stationary gaussian random
processes , SIAM review, Volume { 7}, Issue 1, page 68--80, 1965.

The Document Generation of Random time series with prescribed spectra by Gerhard Heinzel
(S2-AEI-TN-3034)

corrects a mistake in the aforesaid paper and describes the practical implementation. The
following code creates an AO with a time series having a prescribed spectral density, defined
by the input pole zero model:

s = 10; %sampling frequancy
nsecs = 100; %number of seconds to be generated
= ngflg pz(f2)];
z pz(f3)1;

pzm = pzmodel(gain, p, 2):
a = ao(pzm, nsecs, fs)

You can call the iplot function to view the resulting waveform:

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/ao_create.htmlI[10/08/2009 16:23:31]

Creating Analysis Objects (LTPDA Toolbox)

iplot(asaw);

Figure 1
File Edit View Insert Tools Desktop Window Help

DS kI RANS[E|

Plot of time-zeries AQs

Sawtooth
m—000-00-00 00:00:00

L L
LT T

Amplitude [V]
o
[
|]
[
|1
|
|1
|
[y
i
|]

NIERIERIERVERIER
o

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Tirne from O000-01-00 000000 [5]

[®] Analysis Objects Saving Analysis Objects [#]

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/ao_create.htmlI[10/08/2009 16:23:31]

Saving Analysis Objects (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Saving Analysis Objects

Analysis Objects can be saved to disk as either MATLAB binary files (.MAT) or as XML files
(.XML). The following code shows how to do this:

save(aout, "a.mat") % save AO aout to a .MAT file
save(aout, "a.xml") % save AO aout to a .XML file

[#]Creating Analysis Objects Plotting Analysis Objects [#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/ao_save.html[10/08/2009 16:23:34]

Saving Analysis Objects (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/ao_save.html[10/08/2009 16:23:34]

Plotting Analysis Objects (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Plotting Analysis Objects

The data in an AO can be plotted using the iplot method.

The iplot method provides an advanced plotting interface for AOs which tries to make good

use of all the information contained within the input AOs. For example, if the xunits and yunits

fields of the input AOs are set, these labels are used on the plot labels.

In addition, iplot can be configured using a input plist. The following examples show some of

the possible ways to use iplot

>> al = ao(pllst(ltsfcn "sin(2*pi*0.3*t) + randn(size(t))", "fs", 10, "nsecs”, 20))
___________ ao —_—————— . ———

name: TSfcn
provenance: created by hewitson@bobmac-2.0local[172.16.251.1] on MACI/7.6 (R2008a

Prerelease)/0.99 (R2008a Prerelease) at 2008-02-29 18:54:12.127

description:
data: tsdata / sin(2*pi*0.3*t) + randn(suze(t)) [200x1] | (0,-2.00888) (0.1,-1.02877)

(0.2,-1.02874) (0.3,-1.13014) (0.4,0.88310
hist: history 7 ao / $1d: ao.m,v 1. 89 2008/03/07 10:02:29 ingo Exp

mFilename:
mdlfilename:

>> al.data
———————— tsdata 01 -——————————-

game:losin(z*pi*0_3*t) + randn(size(t))
S:

X: [200 1], double

y: [200 1], double

xunits: s

yunits: V

nsecs: 20

t0: 1970-01-01 00:00:00.000

Creates a time-series AO. If we look at the data object contained in this AO, we see that the
xunits and yunits are set to the defaults of seconds [s] and Volts [V].

If we plot this object with iplot we see these units reflected in the x and y axis labels.

>> iplot(al)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/ao_plot.htmlI[10/08/2009 16:23:38]

Plotting Analysis Objects (LTPDA Toolbox)

P

Figure 1
File Edit View Insert Tools Desktop Window Help

s Ddde b R809€sx- @ 08 ad

Time origin: 1978-61-91 66:06:68 006

2 I I |

M,

fmplitude [V]
L]
el
L ==y

5] 5 14 15 21
Time [s]

jﬂ
We also see that the time-origin of the data (to field of the tsdata class) is displayed as the plot
title.

[®]Saving Analysis Objects Parameter Lists [#]

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/ao_plot.htmlI[10/08/2009 16:23:38]

Parameter Lists (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Parameter Lists

Any algorithm that requires input parameters to configure its behaviour should take a
Parameter List (plist) object as input. A plist object contains a vector of Parameter (param)

objects.

The following sections introduce parameters and parameter lists:

e Creating Parameters
e Creating lists of Parameters
e Working with Parameter Lists

[#]Plotting Analysis Objects Creating Parameters [#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/plist_intro.htmI[10/08/2009 16:23:41]

matlab:doc('plist')
matlab:doc('param')
http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/plist_use.html

Parameter Lists (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/plist_intro.htmI[10/08/2009 16:23:41]

Creating Parameters (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Creating Parameters

Parameter objects are used in the LTPDA Toolbox to configure the behaviour of algorithms. A
parameter (param) object has two main properties:

e "key" — The parameter name
e -val" — The parameter value

See param class for further details. The 'key' property is always stored in upper case. The
'value' of a parameter can be any LTPDA object, as well as most standard MATLAB types.

Parameter values can take any form: vectors or matrices of numbers; strings; other objects, for
example a specwin (spectral window) object.

Parameters are created using the param class constructor. The following code shows how to
create a parameter 'a' with a value of 1

>> p = param(“a®, 1)

-—-—- param 1 ----
ke a
va 1

The contents of a parmeter object can be accessed as follows:

>> key = p.key; % get the parameter key

>> val = p.val; % get the parameter value
[®] Parameter Lists Creating lists of Parameters [#]
©LTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/param_create.html[10/08/2009 16:23:44]

Creating Parameters (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/param_create.html[10/08/2009 16:23:44]

Creating lists of Parameters (LTPDA Toolbox)

LTPDA Toolbox contents

Creating lists of Parameters

Parameters can be grouped together into parameter lists (plist).

Creating parameter lists from parameters
Creating parameter lists directly
Appending parameters to a parameter list

e Finding parameters in a parameter list
Removing parameters from a parameter list
Setting parameters in a parameter list
Combining multiple parameter lists

Creating parameter lists from parameters.

The following code shows how to create a parameter list from individual parameters.

>> pl = param(“a", 1); % create Tirst parameter

>> p2 = param(“b", specwin("Hanning®", 100)); % create second parameter
>> pl = plist([pl p2]) % create parameter list

——————————— plist 01 - ———-——-——-

n params: 2

--—— param 1 --—-—-

key: A

val: 1

--—— param 2 --—-—-

key: B

val: specwin

———————— Hanning --—--——-———-—-
alpha: 0O

psil: 31.5

rov: 50

nenbw: 1.5

w3db: 1.4382
flatness: -1.4236
ws: 50

ws2: 37.5

win: 100

Creating parameter lists directly.

You can also create parameter lists directly using the following constructor format:

>> pl = plistgja', 1, *b", “hello®)
——————————— plist 01 - —\————————-

n params: 2

--—- param 1 ----

key: A

va 1

-——— param 2 ----

key: B
val: "hello”

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/plist_create.html[10/08/2009 16:23:48]

Creating lists of Parameters (LTPDA Toolbox)

Appending parameters to a parameter list.
Additional parameters can be appended to an existing parameter list using the append method:

>> pl = append(pl, param("c®, 3)) % append a third parameter
——————————— plist 01 -~ —————————-
n params: 3

-——-— param 1 ----

key: A

val: 1

--—- param 2 ----

key: B

val: “hello”

--—- param 3 ----

key: C

val: 3

Finding parameters in a parameter list.
Accessing the contents of a plist can be achieved in two ways:

>> pl = pl.params(l); % get the Ffirst parameter
>> val = find(pl, "b"); % get the second parameter

If the parameter name (‘key') is known, then you can use the find method to directly retrieve
the value of that parameter.

Removing parameters from a parameter list.
You can also remove parameters from a parameter list:

>> pl
>> pl

remove(pl, 2) % Remove the 2nd parameter in the list
remove(pl, "a") % Remove the parameter with the key "a*

Setting parameters in a parameter list.
You can also set parameters contained in a parameter list:
>> pl

>> pl
keys "a® and

plist("a®, 1, "b", “hello®)
_B§et(pl, a", 5, "b", "ola"); % Change the values of the parameter with the

Combining multiple parameter lists.
Parameter lists can be combined:

>> pl = combine(pll, pl2)

If p11 and p12 contain a parameter with the same key name, the output plist contains a
parameter with that name but with the value from the first parameter list input.

[#]Creating Parameters Simulation/modelling [#]

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/plist_create.html[10/08/2009 16:23:48]

Creating lists of Parameters (LTPDA Toolbox)

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/plist_create.html[10/08/2009 16:23:48]

Simulation/modelling (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Simulation/modelling

Content needs written...

[®]Creating lists of Parameters Built-in models of LTPDA [#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/sim_model.htmI[10/08/2009 16:23:50]

Simulation/modelling (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/sim_model.htmI[10/08/2009 16:23:50]

Built-in models of LTPDA (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Built-in models of LTPDA

LTPDA provides a mechanism for storing typical object constructions as built-in models.
Currently, this feature is only supported for the ao and ssm classes. The toolbox comes already
supplied with some built-in models, though many of these are particular to LTP data analysis
activities. It is, however, relatively straightforward to add your own built-in models.

1. Built-in Analysis Object Models
2. Built-in Statespace Models

[®]Simulation/modelling Built-in Analysis Object Models [#]

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/builtin_models.html[10/08/2009 16:23:53]

Built-in models of LTPDA (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/builtin_models.html[10/08/2009 16:23:53]

Built-in Analysis Object Models (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Built-in Analysis Object Models

¢ Introduction
e Available models
e Adding new models

Introduction

Built-in Analysis Object models provide a convenient way to add parametric contructors to the
AO class. This is best explained with an example.

One of the supplied built-in models is called 'whitenoise'. To see how to build this model, do

>> help ao_model_whitenoise
All AO model files are called ao_model <model name>.

In this case, the help shows:

AO MODEL WHITENOISE constructs a known white-noise time-series
%%90%%%%%%%%6%%%6%%%6%%6%6% %% % Y6%% %% % %6%% %% %% % %% % 6% % %6% %6 %% %% % %% % %% % %% %6 %% %% % %% % %% % %6%% %% %

DESCRIPTION: AO_MODEL_WHITENOISE constructs a known white-noise time-series.

CALL: a = ao(plist("built-in", “whitenoise"), pl);
INPUTS:) o

pl - a parameter list of additional parameters (see below)
PARAMETERS:

"sigma® - standard deviation of the noise. [default: 1]

"nsecs” - number of seconds [s] of data. [default: %J

"fs* - sample rate [Hz] for the white noise. [default: 10]
VERSION: $1d: builtin_models _ao _content.html,v 1.2 2009/02/18 13:14:23 hewitson Exp $
HISTORY: 29-10-08 M Hewitson

Creation

%%9%6%%%%%%%%%%%6%%%6%%%%% %% %% % %% % %% % %% % %% %% % %% % %% % %% %% % %% % %% % %% % %% % %% %% % %% % %% % % %%

To build this model, use the following constructor:

a = ao(pllst(built-in®, “whitenoise®, "sigma®, 2, "nsecs", 100, "fs", 10))
——————————— ao 01: WN -—-————————-

name: WN
description:
data: (0,0.260207192213954) (0.1,-1.01369469442225) (0.2,-2.1763634062959)
(0.3,1. 00632778971068) (214 0(;53 97003913847) .-
———————— tsdata ——————

fs: 10
X: 1000 1], double
_y: 1000 1], double
Xunits: [S
yunits: Vi
nsecs: 10
t0: 1970-01-01 00:00:00.000

hist: ao / ao / $l1d: builtin_models_ao_content.html,v 1.2 2009/02/18 13:14:23
hewitson Exp $-->%$1d: builtin_models ao _content._html,v 1.2 2009/02/18 13:14:23 hewitson Exp $

mFilename:

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/builtin_models_ao.html[10/08/2009 16:23:56]

Built-in Analysis Object Models (LTPDA Toolbox)

mdlfilename:

The special thing about this model, is that it always generates noise from the same seed, thus
providing a reproducible data series.

Available models

To see a list of the currently available built-in models, you can use the ao class static method,
getBuiltInModels:

>> ao.getBuiltinModels

This returns a cell-array with two columns: the first columns contains the model names; the
second column descriptions of the models.

You can also do
>> ao(plist("built-in", "7))

Adding new models

The available AO models are determined by looking through a set of directories for all M-files
with names like ao_model _<model _name>. The directories to be searched are specified in the LTPDA
Preferences under the "models" section.

To add a new model of your own, do the following steps:

1. Create a directory to store your AO model(s) in

2. Add this directory to the list of AO model directories in the preferences

3. Create a new M-file called ao_model_myModel (using an appropriate replacement for
'myModel')

4. Edit the contents of the new model file using the supplied model files as an example

It is recommended to use the above 'whitenoise' model as an example when building your own
models. The source code of that model is heavily commented. In particular, pay attention to
the blocks of code between the EDIT tags. For example, the following code extract from
ao_model_whitenoise.m is concerned with retrieving and processing the additional parameters for
this model:

Yp————— <EDIT>

% Here we deal with the additional parameters of the model. In this case,
% the sample rate of the resulting time-series, the number of seconds,

% and the amplitude of the white-noise data series. When writing your own
% model, you should include the necessary parameters here, together with
% any checks on the possible parameter values.

fs = find(pl, "fs");
nsecs = find(pl, 'nsecs'g;
sigma = Ffind(pl, "sigmaT);
it isempty(fs)

fs = 10;
end
if isempty(nsecs)

nsecs = 1;
end

if isempty(sigma)
sigma = 1;

h————— </EDIT>

To inspect the rest of the code for this model, just edit it:

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/builtin_models_ao.html[10/08/2009 16:23:56]

Built-in Analysis Object Models (LTPDA Toolbox)

>> edit ao_model_whitenoise

[#]Built-in models of LTPDA Built-in Statespace Models [#]

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/builtin_models_ao.html|[10/08/2009 16:23:56]

Built-in Statespace Models (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Built-in Statespace Models

The handling of built-in SSM models is done pretty much the same as for the AO models. To
see a list of available models, use

>> ssm.getBuiltinModels

For creating your own SSM models, follow similar rules as in the AO case. A good example to
follow is

>> edit ssm_model_standard_system_params

[#]Built-in Analysis Object Models Generating model noise [#]

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/builtin_models_ssm.htmI[10/08/2009 16:23:59]

Built-in Statespace Models (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/builtin_models_ssm.htmI[10/08/2009 16:23:59]

Generating model noise (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Generating model noise

Generating non-white random noise means producing arbitrary long time series with a given
spectral density. Such time series are needed for example for the following purposes:

e To generate test data sets for programs that compute spectral densities,
e as inputs for various simulations.

One way of doing this is to apply digital filters (FIR or lIR) to white input noise.

This approach is effectively implemented for the generation of multichannel noise with a given
cross spectral density.

Multichannel transfer functions are identified by an automatic fit procedure based on a
modified version of the vector-fitting algorithm (see Z-Domain Fit for further details on the
algorithm).

Partial fraction expansion of multichannel transfer functions and the implementation of filter
state initialization avoid the presence of unwanted 'warm-up period'.

A different approach is implemented in LTPDA as Franklin noise-generator.
It produces spectral densities according to a given pole zero model (see Pole/Zero Modeling)
and does not require any warm-up period.

[#]Built-in Statespace Models Franklin noise-generator [#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/noisegen.html[10/08/2009 16:24:02]

Generating model noise (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/noisegen.html[10/08/2009 16:24:02]

Franklin noise-generator (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Franklin noise-generator

The following sections gives an introduction to the generation of model noise using the noise
generator implemented in LTPDA.

e Franklin's noise generator
e Description

e |nputs

Outputs

e Usage

Franklin's noise generator

Franklin's noise generator is a method to generate arbitrarily long time series with a prescribed
spectral density. The algorithm is based on the following paper:

Franklin, Joel N.: Numerical simulation of stationary and non-stationary gaussian random
processes , SIAM review, Volume { 7}, Issue 1, page 68--80, 1965.

The Document Generation of Random time series with prescribed spectra by Gerhard Heinzel
(S2-AEI-TN-3034)
corrects a mistake in the aforesaid paper and describes the practical implementation.

See Generating model noise for more general information on this.

Franklin's method does not require any 'warm up' period. It starts with a transfer function given
as ratio of two polynomials.

The generator operates on a real state vector y of length n which is maintained between
invocations. It produces samples of the time series in equidistant steps T = 1/fs, where fs is
the sampling frequency.

e yO = Tinit * r, on initialization
e yi=E*yi-1 + Tprop * r, to propagate
e Xi =a*vyi, the sampled time series.

r is a vector of independent normal Gaussian random numbers Tinit, E, Tprop which are real
matrices and a which is a real vector are determined once by the algorithm.

Description

When an analysis object is constructed from a pole zero model Franklin's noise generator is

called (compare Creating AOs from pole zero models).

Inputs

for the function call the parameter list has to contain at least:
* nsecs - number of seconds (length of time series)

e fs - sampling frequency
e pzmodel with gain

Outputs

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/franklin_ng.html[10/08/2009 16:24:05]

Franklin noise-generator (LTPDA Toolbox)

e b - analysis object containing the resulting time series

Usage

The analysis object constructor ao calls the following four functions when the input is a
pzmodel.

* ngconv
e ngsetup
e nginit
* nhgprop

First a parameter list of the input parameters is to be done. For further information on this look
at Creating parameter lists from parameters.
Starting from a given pole/zero model

The parameter list should contain the number of seconds the resulting time series should have
nsecs and the sampling frequency fs.
The constructor call should look like this:

fl = 5;
2 = 10;
f3 =1
ain = 1

s = 10; %sampling frequency
nsecs = 100; %number of seconds to be generated

= z(f1 z(f2)1;
e e
pzm = pzmodel(gain, p, z);
a = ao(pzm, plist(*nsecs®, nsecs, "fs",fs)

The output will be an analysis object a containing the time series with the spectrum described
by the input pole-zero model.

[#] Generating model noise Noise generation with given CSD [#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/franklin_ng.html[10/08/2009 16:24:05]

Noise generation with given CSD (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Noise generation with given CSD

The following sections gives an introduction to the generation of model noise with a given
cross spectral density.

e Multichannel Spectra

Theory

NoisegenlD

Noisegen2D

Multichannel Noise Generator

Multichannel Spectra

We define the autocorrelation function (ACF) of a stationary multichannel process as:

R K] = o[Z[n] 27 [n+4])

If the multichannel process is L dimensional then the kth element of the ACF is a LxL matrix:

ﬁl[k] ﬁi[k]

B[K=| © -
.?"Ll[k'] rll[k]
The ACF matrix is not hermitian but have the property that:
R K] = Ry, [-K]
The cross-spectral density matrix (CSD) is defined as the fourier transform of the ACF:

R - Bl

PLI-[f) PLL-IZf)

the CSD matrix is hermitian.

A multichannel white noise process is defined as the process whose ACF satisfies:

R, [k] = £8[k]
therefore the cross-spectral matrix has constant terms as a function of the frequency:

E. [f) =2
The individual processes are each white noise processes with power spectral density (PSD)
given by X, . The cross-correlation between the processes is zero except at the same time

instant where they are correlated with a cross-correlation given by the off-diagonal elements
of 3. A common assumption is 3 _] (identity matrix) that is equivalent to assume the white

processes having unitary variance and are completely uncorrelated being zero the off diagonal
terms of the CSD matrix. Further details can be found in [1, 2].

Theory

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/ndim_ng.html[10/08/2009 16:24:13]

Noise generation with given CSD (LTPDA Toolbox)

The problem of multichannel noise generation with a given cross-spectrum is formulated in
frequency domain as follows:

xx

15 (ﬂ) _ ﬁa(ejg'g)fﬁ’H (EJQ)
ﬁ[z) is a multichannel digital filter that generating colored noise data with given cross-

spectrum ﬁn [ﬂ) starting from a set of mutually independent unitary variance with noise

processes.

After some mathematics it can be showed that the desired multichannel coloring filter can be
written as:

H(e™)=7(Q)AY Q)

where ﬁ'(ﬂ) and ﬁ(ﬂ) are the eigenvectors and eigenvalues matrices of P (Q) matrix.

References

1. S. M. Kay, Modern Spectral Estimation, Prentice-Hall, 1999
2. G. M. Jenkins and D. G. Watts, Spectral Analysis and Its Applications, Holden-Day 1968.

[#]Franklin noise-generator noisegen1D [#]

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/ndim_ng.html[10/08/2009 16:24:13]

noisegenlD (LTPDA Toolbox)

LTPDA Toolbox contents

nhoisegenlD

Description
Call

Inputs
Outputs
Algorithm
Parameters

Example

Description

noisegenlD is a coloring tool allowing the generation of colored noise from withe noise with a given
spectrum. The function constructs a coloring filter through a fitting procedure to the model
provided. If no model is provided an error is prompted. The colored noise provided has one-sided
psd corresponding to the input model.

Call

b = noisegenlD(a, pl);

[bl,b2,.._, bn] = noisegeniD(al,a2, ..., an, pb);
Inputs

e a - is a tsdata analysis object or a vector of tsdata analysis objects
e pl - is a plist with the input parameters. See the list of function parameters below

Outputs

e b - Colored time-series AOs. The coloring filters used are stored in the objects procinfo field
under the parameter 'Filt'.

Algorithm

1. Fit a set of partial fraction z-domain filters using utils.math.psd2tf.
2. Convert to array of MIIR filters.
3. Filter time-series in parallel.

Parameters

e 'Model' - a frequency-series AO describing the model psd.
e 'Maxlter' - Maximum number of iterations in fit routine [default: 30]
* 'PoleType' - Choose the pole type for fitting:
= 1 - use real starting poles.
= 2 - generates complex conjugate poles of the type a.*exp(theta*pi*j) with theta
linspace(0,pi,N/2+1).
= 3 - generates complex conjugate poles of the type a.*exp(theta*pi*j) with theta
linspace(0,pi,N/2+2) [default].
¢ 'MinOrder' - Minimum order to fit with. [default: 2].
e 'MaxOrder' - Maximum order to fit with. [default: 25]
e 'Weights' - choose weighting for the fit: [default: 2]
= 1 - equal weights for each point.

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/ng1D.html[10/08/2009 16:24:17]

noisegenlD (LTPDA Toolbox)

= 2 - weight with 1/abs(model).
= 3 - weight with 1/abs(model).A2.
= 4 - weight with inverse of the square mean spread of the model.

e 'Plot' - plot results of each fitting step. [default: false]

» 'Disp' - Display the progress of the fitting iteration. [default: false]

» 'FitTolerance' - Log Residuals difference - Check if the minimum of the logarithmic difference
between data and residuals is larger than a specified value. ie. if the conditioning value is 2, the
function ensures that the difference between data and residuals is at lest 2 order of magnitude
lower than data itsleves. [Default: 2].

e 'RMSEVar' - Root Mean Squared Error Variation - Check if the variation of the RMS error is
smaller than 10A(-b), where b is the value given to the variable. This option is useful for
finding the minimum of Chi squared. [default: 7].

Example

%% Noise generation from fsdata model object %%%%%%%%%%%%%%%%%%%%%%%%%%%

% Description:

% 1) Generate a fsdata object to be used as psd model
Generate a random series of data (white§
Generate colored noise with noisegenlD
calculated psd of generated data

check result by plotting

=S
O WN

% 1)

fs = 10; % sampling frequencg

pl_modl = plist("fsfcn®, "0.01./(0.01+F)", *"fl", le-6, "f2°, 5, *nf", 100);
modl = ao(pl _modl); % fsdata model object

% 2)
% generating white noise)
al = ao(plist("tsfcn®, “randn(size(t))", "fs", fs, "nsecs”, 1000));

% 3) Noise generation

pll = plist(...
"model®, modl,
"Maxliter®, 30, ...
"PoleType®, 2, ...
*MinOrder®, 10,
"MaxOrder®, 20,
"Weights", 2, ...
"Plot", false,...
"Disp”, false,...
"RMSEvar®, 5,...
"FitTolerance®, 2);

acl = noisegenlD(al, pll);
% 4)
acxxl = acl.psd;

% 5)
iplot(acxx1l, modl);

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/ng1D.html[10/08/2009 16:24:17]

noisegen1D (LTPDA Toolbox)

10°

Noisegen1D{a1)
Model

10° 107 10% 10° 10°
Frequency [Hz|

[«]Noise generation with given CSD noisegen2D [#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/ng1D.html[10/08/2009 16:24:17]

noisegen2D (LTPDA Toolbox)

LTPDA Toolbox contents [€]

nhoisegen2D

Description
Call

Inputs
Qutputs

Algorithm
Parameters

Description

noisegen2D generates colored noise from withe noise with a given cross spectrum. The
coloring filter is constructed by a fitting procedure to the models provided. If no model is
provided an error is prompted. The cross-spectral matrix is assumed to be frequency by
frequency of the type:

/ csdl1(f) csdiz2(f) \

cs =
e csd21(F) csd22(F)

Note: The function output colored noise data with one-sided cross spectral density
corresponding to the model provided.

Call

b = noisegen2D(a, pl)
[bl,bZ] = noisegen2D(al, a2, pl)
bl,b2,..., bn]l = noisegen2D(al,az,..., an, pl);

* Notel: input AOs must come in couples.
e Note2: this method cannot be used as a modifier, the call a.noisegen2p(pl) is forbidden.

Inputs

e ais at least a couple of time series analysis objects
e plis a parameter list, see the list of accepted parameters below

Outputs

e b are a couple of colored time-series AOs. The coloring filters used are stored in the
objects procinfo field under the parameters:
= b(1): 'Filtll" and 'Filt12'
= b(2): 'Filt21" and 'Filt22'

Algorithm
1. Fit a set of partial fraction z-domain filters using utils.math.psd2tf

2. Convert to bank of mlIR filters
3. Filter time-series in parallel The filtering process is:

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/ng2D.html[10/08/2009 16:24:20]

noisegen2D (LTPDA Toolbox)

b(1) = Filtl11(a(1)) + Filt12(a(2))
b(2) = Filt21(a(1)) + Filt22(a(2))

Parameters

csd11' - a frequency-series AO describing the model csd11

csd12' - a frequency-series AO describing the model csd12

csd21' - a frequency-series AO describing the model csd21

'csd22' - a frequency-series AO describing the model csd22

'MaxlIter' - Maximum number of iterations in fit routine [default: 30]

'PoleType' - Choose the pole type for fitting:
= 1 - use real starting poles.
= 2 - generates complex conjugate poles of the type a.*exp(theta*pi*j) with theta =

linspace(0,pi,N/2+1).
= 3 - generates complex conjugate poles of the type a.*exp(theta*pi*j) with theta =
linspace(0,pi,N/2+2) [default].

e 'MinOrder' - Minimum order to fit with. [default: 2].

e 'MaxOrder' - Maximum order to fit with. [default: 25]

e 'Weights' - choose weighting for the fit: [default: 2]

= 1 - equal weights for each point.

= 2 - weight with 1/abs(model).

= 3 - weight with 1/abs(model).A2.

= 4 - weight with inverse of the square mean spread of the model.

e 'Plot' - plot results of each fitting step. [default: false]

» 'Disp' - Display the progress of the fitting iteration. [default: false]

» 'FitTolerance' - Log Residuals difference check if the minimum of the logarithmic
difference between data and residuals is larger than a specified value. ie. if the
conditioning value is 2, the function ensures that the difference between data and
residuals is at lest 2 order of magnitude lower than data itsleves. [default: 2].

e 'RMSEVar' - Root Mean Squared Error Variation - Check if the variation of the RMS error is
smaller than 10A(-b), where b is the value given to the variable. This option is useful for
finding the minimum of Chi squared. [default: 7].

e 'UseSym' - Use symbolic calculation in eigendecomposition. [default: 0]

= 0 - perform double-precision calculation in the eigendecomposition procedure to
identify 2dim systems and for poles stabilization

= 1 - uses symbolic math toolbox variable precision arithmetic in the
eigendecomposition for 2dim system identification and double-precison for poles
stabilization

= 2 - uses symbolic math toolbox variable precision arithmetic in the
eigendecomposition for 2dim system identification and for poles stabilization

[€]noisegen1D Multichannel Noise Generator [#]

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/ng2D.html[10/08/2009 16:24:20]

Multichannel Noise Generator (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Multichannel Noise Generator

to come after version 2...

[€Inoisegen2D Statespace models [#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/ngND.htmI[10/08/2009 16:24:23]

Multichannel Noise Generator (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/ngND.htmI[10/08/2009 16:24:23]

Statespace models (LTPDA Toolbox)

LTPDA Toolbox contents (€]
Statespace models

introduce what this is all about

[®]Multichannel Noise Generator Introduction to Statespace Models with LTPDA [#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/ssm.html[10/08/2009 16:24:25]

Statespace models (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/ssm.html[10/08/2009 16:24:25]

Introduction to Statespace Models with LTPDA (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Introduction to Statespace Models with
LTPDA

introduce how statespace models are implemented in ltpda

[#]Statespace models Building Statespace models [#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/ssm_introduction.html|[10/08/2009 16:24:28]

Introduction to Statespace Models with LTPDA (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/ssm_introduction.html|[10/08/2009 16:24:28]

Building Statespace models (LTPDA Toolbox)

LTPDA Toolbox contents [«]
Building Statespace models

describe how we can build ssm models; index to more specific methods that follow.

[#]Introduction to Statespace Models with LTPDA Building from scratch[#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/ssm_building.htmI[10/08/2009 16:24:31]

Building Statespace models (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/ssm_building.htmI[10/08/2009 16:24:31]

Building from scratch (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Building from scratch

describe how to build ssm models from description. Introduce the constructor and setter
methods for modifying the ssm object. give some examples

Building from built-in models [#]

Building Statespace models

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/ssm_build_description.htmI[10/08/2009 16:24:34]

Building from scratch (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/ssm_build_description.htmI[10/08/2009 16:24:34]

Building from built-in models (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Building from built-in models

how to use built-in models. How to write your own built-in models. This should somehow link
to the other section of the user manual 'Built-in models of LTPDA'

[®]Building from scratch Modifying systems [#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/ssm_build_built_in.htmI[10/08 /2009 16:24:37]

Building from built-in models (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/ssm_build_built_in.htmI[10/08 /2009 16:24:37]

Modifying systems (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Modifying systems

Content needs written...

[®]Building from built-in models Assembling systems [$]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/ssm_modify.htmlI[10/08/2009 16:24:40]

Modifying systems (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/ssm_modify.htmlI[10/08/2009 16:24:40]

Assembling systems (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Assembling systems

how to assemble multiple models in to a system

[€]Modifying systems Simulations [#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/ssm_assemble.htmI[10/08 /2009 16:24:43]

Assembling systems (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/ssm_assemble.htmI[10/08 /2009 16:24:43]

Simulations (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Simulations

describe how to make a simulation - time-domain via simulate - bode plots

[®]Assembling systems Transfer Function Modelling

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/ssm_simulation.htmI[10/08/2009 16:24:46]

Simulations (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/ssm_simulation.htmI[10/08/2009 16:24:46]

Transfer Function Modelling (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Transfer Function Modelling

In the LTPDA toolbox you have several way to define transfer functions depending on the
mathematical representation you want to use

e Pole/zero representation

e Sum of partial fractions representation
e Rational representation

[#]Simulations Pole/Zero representation [#]

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/TransferFunction_model.htmI[10/08/2009 16:24:49]

Transfer Function Modelling (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/TransferFunction_model.htmI[10/08/2009 16:24:49]

Pole/Zero representation (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Pole/Zero representation

Pole/zero modelling is implemented in the LTPDA Toolbox using two classes: a pz (pole/zero)
class, and a pole/zero model class, pzmodel.

The following pages introduce how to produce and use pole/zero models in the LTPDA
environment.

e Creating poles and zeros

e Building a model

e Model helper GUI

e Converting models to IR filters

[®] Transfer Function Modelling Creating poles and zeros [#]

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/pzmodel.html[10/08/2009 16:24:53]

Pole/Zero representation (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/pzmodel.html[10/08/2009 16:24:53]

Creating poles and zeros (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Creating poles and zeros

Poles and zeros are treated the same with regards creation, so we will look here at poles only.
The meaning of a pole and a zero only becomes important when creating a pole/zero model.

Poles are specified by in the LTPDA Toolbox by a frequency, f, and (optionally) a quality factor,
Q, or by a complex number.

The following code fragment creates a real pole at 1Hz:

g: NaN
_ri: -6.28318530717959)
version: $l1d: pzmodel pz content.html,v 1.3 2009/02/18 12:15:16 hewitson Exp $

To create a complex pole, you can specify a quality factor. For example,

>> pz(1,4)
—————— pz/1

14
_ri: [0.785398163397448+1*6.23390466154956;0.785398163397448-1*6.23390466154956]
version: $ld: pzmodel _pz content.html,v 1.3 2009/02/18 12:15:16 hewitson Exp $

This creates a complex pole at 1Hz with a Q of 4. You can also see that the complex
representation is also shown, but only one part of the conjugate pair.

[®]Pole/Zero representation Building a model

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/pzmodel_pz.htmI[10/08/2009 16:24:58]

Creating poles and zeros (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/pzmodel_pz.htmI[10/08/2009 16:24:58]

Building a model (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Building a model

Poles and zeros can be combined together to create a pole/zero model. In addition to a list of
poles and zeros, a gain factor and a delay can be specified such that the resulting model is of
the form:

f__.‘»‘ —_ :_‘IJJII:;.E- — ,32:| . f‘* - ::“"l

Lo T

His) =G
{H} (s — jl'JI.J”-rH — ,”2;' - |_r.": — j”m] f

The following sections introduce how to produce and use pole/zero models in the LTPDA
environment.

e Direct form

e Creating from a plist
e Computing the response of the model

Direct form

The following code fragment creates a pole/zero model consisting of 2 poles and 2 zeros with
a gain factor of 10 and a 10ms delay:

>> ?zm = pzmodel (10, {[1 2], 3}, {5, 10}, 0.01)
--—- pzmodel 1 --—-
name: None
gain: 10
_delay: 0.01
iunits:
ounits:
pole 001: =1 Hz,Q=2)

pole 002: (f=3 Hz,Q=NaN
zero 001: (f=5 Hz,Q=NaN
zero 002: (=10 Hz,Q=NaN)

(&)

Notice, you can also pass arrays of pz objects to the pzmodel constructor, but this should rarely
be necessary.

Creating from a plist

You can also create a pzmodel by passing a parameter list. The following example shows this

>> pl = plist("name®, “test model”,
"gain®, 10, ...
"poles”, {[1 2], 3}, --..
“zeros®, {5, 10}, ...
"delay”, 0.01,
“funits®, "m”

"ounits®, "V/A2%);
>> pzm = pzmodel(pl)
-—--— pzmodel 1 ----
name: test model
gain: 10
delay: 0.01
funits: [m
ounits: [V/~2]
pole 001: (f=1 Hz,Q=2)
pole 002: (f=3 Hz,Q=NaN
zero 001: (f=5 Hz,Q=NaN
zero 002: (=10 Hz,Q=NaN)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/pzmodel_model.htmI|[10/08/2009 16:25:06]

Building a model (LTPDA Toolbox)

Here we also specified the input units of the transfer function ('iunits') and the output units,
('ounits'). In this case, the model represents a transfer function from metres to Volts squared.

Computing the response of the model

The frequency response of the model can generated using the resp method of the pzmodel class.
To compute the response of the model created above:

>> resp(pzm)

Since no output was specified, this command produces the following plot:
l P __

Figure 1
File Edit View Insert Tools Deskiop Window Help
b j_ilﬂi‘ﬂ 3 *\-‘\-W'@Qﬁ' @) D. m O
2
1@ I I I I T 1T
.-.--\ ‘ resp{ test model)
A 10°
C T
; ""\\
= -z ---"'""--.
=] 1 _—
o}
18
1] 1
16 16 16 16
Frequency [HZ
2@@ I I I I T 1T
-‘_r‘esp(test maodel
=
B 1] \\
¥ N
o N
3 O - N
ot [y
B TN \\
=156 \
268
-1 =] 1 2
1a 16 16 16
Frequency [Hg
P

You can also specify the frequency band over which to compute the response by passing a
plist to the resp method, as follows:

>> rpl = plist("f1", 0.1, ...
P p“mg,lmm,._
“*nf", 10000);
>> a = resp(pzm, rpl
——————————— ao 01: resp(test model) - -—————-————-

name: resp(test model)

description:)
data: (0.1,10.0668830776529-1*0.605439551995965) (0.100092155051679,10.067006787497 -

i*0.606014805088671) (0.100184395028894,10.0671307268392-1*0.606590636924472)
0.100276720009908,10.0672548961078-1*0.607167048174596) (0.100369130073055,10.0673792957318-

1*0.607744039511284) ...
——————————— fsdata 01 -————-—-——-——-

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/pzmodel_model.htmI|[10/08/2009 16:25:06]

Building a model (LTPDA Toolbox)

X: 1 10000}, double
1 10000}, double

Xunits: Hz
%2)] [m(-1)

yunits: VA
t0: 1970-01-01 00:00:00.000

navs: NaN

hist: pzmodel / resp / $ld: pzmodel_model_content_html,v 1.5 2009/02/24 09:44:39

miquel Exp $
mFilename:
mdlfilename:

In this case, the response is returned as an Analysis Object containing fsdata. You can now plot
the AO using the iplot function.

[®]Creating poles and zeros Model helper GUI [#]

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/pzmodel_model.htmI|[10/08/2009 16:25:06]

Model helper GUI (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Model helper GUI

A simple GUI exists to help you build pole/zero models. To start the GUI, type

>> pzmodel helper

More details on the PZModel Helper GUI.

[«]Building a model Sum of partial fractions representation

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/pzmodel_gui.htmI|[10/08/2009 16:25:12]

Model helper GUI (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/pzmodel_gui.htmI|[10/08/2009 16:25:12]

Sum of partial fractions representation (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Sum of partial fractions representation

Transfer functions can be expressed as a quocient of polynomials

N

o
H(s) = K(s)+ Y —

&8 — Ik

T —

The constructor can be used in different ways

From poles and residues

The standard way is to input the coefficients of your filter. The constructor accepts as a
optional properties the name

>> par = parfrac([1 2+1i 2-1i], [6 1+3i 1-3i], [D

---—— parfrac 1 --——-
model : None

res: 1;2+i*1;2-1*1
poles: 6;1+1*3;1-1*3
dir: 0

pmull : {i;l;l]
funits:

ounits:

From partial XML file
You can input a XML file containing a transfer function model into the constructor

>> par = parfrac("datafile.xml™)

From mat file
You can input a mat file containing a transfer function model into the constructor

>> rat = parfrac("datafile_.mat")

From plist
All the properties of the filter can be specified in a plist and then passed to the constructor:

>> pl = plist(CTiunits®,"m", ounits®,"V*","res",[1 2+1i 2-1i],"poles®,[6 1+3i 1-3i],--.
"name”, "Filter_mame");
>> par = parfrac(pl)

-——-- parfrac 1 ----
model : filter_mame
res: 1;2+1*1;2-i*1
poles: 6;1+1*3;1-1*3
diri 1;1;1]

mul : ;1;

?units: Em]

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/parfrac.htmI[10/08/2009 16:25:17]

Sum of partial fractions representation (LTPDA Toolbox)

ounits: vl

From repository
Rational transfer function can be obtained from the repository with the following syntax.

>> rat = rational("Hostname", "localhost”, "Database”, "ltpda”,...
“1D°,[]."CID",[1. Binary”,yes)

Model helper GUI Rational representation

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/parfrac.htmI[10/08/2009 16:25:17]

Rational representation (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Rational representation

Transfer functions can be expressed as a quocient of polynomials as in the following
expression

] 5™ 4 gos™ l-“.-u””1

His) =
{“} F}[.H” —-—._h-_}ﬁ'” L4 ...+'r?ra- L

The constructor can be used in different ways

From coefficients

The standard way is to input the coefficients of your filter. The constructor accepts as a
optional properties the name

>> rat = rational([1 3 5 7],[5 10 0.01], “filter_name®)
-—--- rational 1 --—-

model : filter_name

num: 135 7]

den: 5 10 0.01]

funits:

ounits:

From partial XML file

You can input a XML file containing a transfer function model into the constructor

>> rat = rational (“datafile.xml*)

From mat file

You can input a mat file containing a transfer function model into the constructor

>> rat = rational("datafile.mat")

From plist
All the properties of the filter can be specified in a plist and then passed to the constructor:

>> pl :_glist('iunits','m','ounits','V','num',[1 3 10],"den",[4 6], ---

“name”, "filter_mame~);
>> par = parfrac(pl)
-—--- rational 1 —-—-
model : filter_mame
num: 1 3 10]
den: 4 6]
iunits: m]

ounits: V

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/rational.html[10/08/2009 16:25:23]

Rational representation (LTPDA Toolbox)

From repository
Rational transfer function can be obtained from the repository with the following syntax.

>> rat = rational("Hostname", "localhost”, "Database”, "ltpda”,...
“1D*,[1.°CID",[1."Binary~,yes)

[®]Sum of partial fractions Converting models between different [#]
representation representations
OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/rational.html[10/08/2009 16:25:23]

Converting models between different representations (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Converting models between different
representations

Content needs written...

[€]Rational representation Converting models to digital filters [#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/convert_models.html|[10/08/2009 16:25:28]

Converting models between different representations (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/convert_models.html|[10/08/2009 16:25:28]

Converting models to digital filters (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Converting models to digital filters

Transfer functions models can be converted to IIR/FIR filters using the bilinear transform. The
result of the conversion is an miir/mfit object. To convert a model, you need simply to input
your model into the miir/mfir constructor. In the current LTPDA version, only the following
discretization from transfer function models are allowed:

Digital
(IR/FIR)
Pole/fero
Rational x
Partial
Fraction

From pzmodel

To get an IIR filter from a given pzmodel we need to write down
>> filt = miir(pzmodel)

If no sample rate is specified, then the conversion is done for a sample rate equal to 8 times
the highest pole or zero frequency. You can set the sample rate by specifying it in the
parameter list:

>> Filt = miir(pzmodel,plist("fs", 1000))

For more information of IIR filters in LTPDA, see IIR Filters.

From partial fraction

Analogously, the same rules apply to a partial fraction model parfrac constructor

>> filt = miir(parfrac)

[®]Converting models between different representations Signal Pre-processing in LTPDA [#]

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/pzmodel_filter.htmI[10/08/2009 16:25:34]

Converting models to digital filters (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/pzmodel_filter.htmI[10/08/2009 16:25:34]

Signal Pre-processing in LTPDA (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Signal Pre-processing in LTPDA

Signal pre-processing in LTPDA consists on a set of functions intended to pre-process data
prior to further analysis. Pre-processing tools are focused on data sampling rates
manipulation, data interpolation, spike cleaning and gap filling functions.

The following pages describe the different pre-processing tools available in the LTPDA toolbox:

Downsampling data
Upsampling data
Resampling data
Interpolating data
Spikes reduction in data
Data gap filling

Noise Whitening

[#] Converting models to digital filters Downsampling data [#]

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/preproc.html[10/08/2009 16:25:39]

Signal Pre-processing in LTPDA (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/preproc.html[10/08/2009 16:25:39]

Downsampling data (LTPDA Toolbox)

LTPDA Toolbox contents

Downsampling data

Downsampling is the process of reducing the sampling rate of a signal. bownsample reduces the
sampling rate of the input AOs by an integer factor by picking up one out of N samples. Note that no
anti-aliasing filter is applied to the original data. Moreover, a offset can be specified, i.e., the sample
at which the output data starts ---see examples below.

With the following parameters:

e factor — decimation factor [by default is 1: no downsampling] (must be an integer)
e offset - sample offset for decimation

Examples

1. Downsampling a sequence of random data at original sampling rate of 10 Hz by a factor of 4
(fsout = 2.5 Hz) and no offset.

% create an A0 of random data with fs = 10 Hz

pl plist("tsfcn®, "randn(size(t))","fs",10, "yunits"," m");
X ao(ph)

pl_down plist(“factor®, 4)); % add the decimation factor

\% downsample(x pl down) % downsample the input AO, X
iplot(x, y) % plot oruglnaT x, and decimated, y, AOs

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/downsample.html[10/08/2009 16:25:47]

matlab:doc('ao/downsample')

Downsampling data (LTPDA Toolbox)

Figure 3

File Edit View Insert Tools Desktop Window Help

s Ddde b ASOP€s4- @ 0 a0

. Time origin: 1978-01-81 @080 ;606, BEE

— 0]
— s anp Le (s

1.5

H
e ——

iy A

]
E
- .5
= 1
g
-1
_1. 5 I
—7
“ g 2 4 6 5 10

Time []

2. Downsampling a sequence of random data at original sampling rate of 10 Hz by a factor of 4
(fsout = 2.5 Hz) and offset = 10.

% create an AO of random data with fs = 10 Hz
plist(“tsfcn®, “"randn(size(t))","fs",10, "yunits®,"m");

pl =

X = ao(ph) S

pl_downoff = plist("factor®, 4, offset”,10); % add the decimation factor and the offset
parameter

y downsample(x, pl_downoff); % downsample the input AO, x
iplot(x, y) % plot original,x, and decimated,y, AOs

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/downsample.html[10/08/2009 16:25:47]

Downsampling data (LTPDA Toolbox)

Figure 4
File Edit View Insert Tools Desktop Window Help

s Ddde b ASOP€s4- @ 0 a0

Time origin: 1978-01-81 @080 ;606, BEE

2.5 I
— 01 E
— s anp Le (s
2 |
1.5 y N
1 } 1 1
[h.5 |
% @ 1 [] .A
2 v l
= N
E - \ \ | v N
-1) ¥
_1.5 I
-7] |
23, 2 4 6 g 16

Time []

[«]Signal Pre-processing in LTPDA Upsampling data[#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/downsample.html[10/08/2009 16:25:47]

Upsampling data (LTPDA Toolbox)

LTPDA Toolbox contents

Upsampling data

Upsampling is the process of increasing the sampling rate of a signal. upsample increases the sampling
rate of the input AOs by an integer factor. LTPDA upsample overloads upsample function from Matlab
Signal Processing Toolbox. This function increases the sampling rate of a signal by inserting (n-1)
zeros between samples. The upsampled output has (n*input) samples. In addition, an initial phase can
be specified and, thus, a delayed output of the input can be obtained by using this option.

Syntax
b = upsample(a, pl)

With the following parameters:

e N - specify the desired upsample rate
e phase - specify an initial phase range [0, N-1]

Examples

1. Upsampling a sequence of random data at original sampling rate of 1 Hz by a factor of 10 with no
initial phase.

pl = plis}('tsfcn', "randn(size(t)) ", "fs",1, "yunits","m");

X = ao(pth),;

pl_up = plist(°N", 10); % increase the sampling frequency by a factor of 10

y = upsample(x, pl_up); % resample the input AO (x) to obtain the upsampled A0 (y)
iplot(x, y) % plot original and upsampled data

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/upsample.htmI[10/08/2009 16:25:55]

matlab:doc('ao/upsample')
matlab:doc('ao/upsample')

Upsampling data (LTPDA Toolbox)

Figure 5
File Edit View Insert Tools Desktop Window Help

» Ddde b ARO0EM- & 0 ad

Time origin: 1978-01-81 @080 ;606, BEE

2.5 I
e [012
—nzamp e)
5 |
1.5 I
1 1 1
[h.5
= o
=
=
_%‘ 0.5
-1 | '
_1 . 5 v
-7 l
2.5
5 2E 43 B b1 166
Time []

2. Upsampling a sequence of random data at original sampling rate of 1 Hz by a factor of 21 with a
phase of 20 samples.

pl plzsf('tsfcn' , "randn(size(t))","fs",1, yunits", m");

X ao(pt);

pl_upphase plist(°N", 21, "phase”, 20)); % increase the sampling frequency and add phase of 20
samples to upsampled data

Y = upsample(x, pl_upphase); % resample the input A0 (x) to obtain the upsampled and
delayed A0 (y)

iplot(x, y) % plot original and upsampled data

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/upsample.htmI[10/08/2009 16:25:55]

Upsampling data (LTPDA Toolbox)

Figure 6
File Edit View Insert Tools Desktop Window Help

s Ddde b ASOP€s4- @ 0 a0

5 Time origin: 1978-01-81 @080 ;606, BEE

T
| — |0

—nzamp e)

b ..

LR

| Ak
T
_1 il

fmplitude []

I
I

5] 2 A5 515} 20 1Ea
Time []

[«]Downsampling data Resampling data [#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/upsample.htmI[10/08/2009 16:25:55]

Resampling data (LTPDA Toolbox)

LTPDA Toolbox contents

Resampling data

Resampling is the process of changing the sampling rate of data. Resample changes the sampling rate
of the input AOs to the desired output sampling frequency. LTPDA resample overloads resample
function of Matlab Signal Processing Toolbox for AOs.

b = resample(a, pl)

With the following parameters:

e fsout - specify the desired output frequency (must be positive and integer)
e filter - specified filter applied to the input, a, in the resampling process

Examples

1. Resampling a sequence of random data at original sampling rate of 1 Hz at an output sampling of
50 Hz.

% create an AO of random data with fs = 10 Hz

pl = plzst('tsfcn' , "randn(size(t))","fs",1, "yunits®,"m");
X = ao(p
pl_re = plist("fsout®, 50));

y resample(x, pl); % i’esample the input A0 (X) to obtain the resampled output A0 (y)
iplot(x, y) % plot original and resampled data

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/resample.htmI[10/08/2009 16:26:02]

matlab:doc('ao/resample')
matlab:doc('ao/resample')

Resampling data (LTPDA Toolbox)

B0 Figure 1
File Edit View Insert Tools Desktop Window Help
» Udde h RRODEL- @ 0B O
. Time origin: 1978-01-01 060:00 ;608,666
I—Nu:ur'ua
m—resanple(x)
2
1
i)
= @
2 v
=
5
-1
-2
-3
5] 26 i Gl 26 16a
Time []

&

1. Resampling a sequence of random data at original sampling rate of 10 Hz at an output sampling of

1 Hz with a filter defined by the user.

% create an AO of random data with fs = 10 Hz)
pl = plist("tsfcn®, “"randn(size(t))","fs",10, "yunits®,"m");
x = ao(pD)

% Filter definition

% create parameters list for the filter

plfilter = plist("type”", "Win" ,specwin(“Kaiser®, 10, 150), "order*”,32,"fs",10, "fc",1);
L mfir(plfilter)

% resampling

il pl = plist(C"fsout™, 1, "filter",f)); define parameters list with fsout = 1 Hz and the defined
ilter

y = resample(x, pl); % resample the input AO (X) to obtain the resampled output A0 (y)
iplot(x, y) % plot original and resampled data

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/resample.htmI[10/08/2009 16:26:02]

Resampling data (LTPDA Toolbox)

Figure 2
File Edit View Insert Tools Desktop Window Help

s Ddde b ASOP€s4- @ 0 a0

Time origin: 1978-01-81 @080 ;606, BEE

T
— |0

e rezamp e)

\

/-

dmplitude []
Fi

Time []

Upsampling data Interpolating data [#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/resample.htmI[10/08/2009 16:26:02]

Interpolating data (LTPDA Toolbox)

LTPDA Toolbox contents

Interpolating data

Interpolation of data can be done in the LTPDA Toolbox by means of interp. This function interpolates
the values in the input AO(s) at new values specified by the input parameter list.

Interp overloads interp1 function of Matlab Signal Processing Toolbox for AOs.

Syntax
b = interpolate(a, pl)

With the following parameters:

e vertices - specify the new vertices to interpolate on
e method - four methods are available for interpolating data
= 'nearest'- nearest neighbor interpolation
= 'linear' - linear interpolation
= 'spline' - spline interpolation (default option)
= 'cubic' - shape-preserving piecewise cubic interpolation

For details see interp1 help of Matlab.
Examples

1. Interpolation of a sequence of random data at original sampling rate of 1 Hz by a factor of 10 with
no initial phase.

% Signal generation

pl = plist("tsfcn®, "sin(2*pi*1.733*t) ", ...
*fs",1,"nsecs”,10, ...
"yunits®,"V");

x = ao(pl) i

% Interpolate on a new time vector

t = linspace(0, x.data.nsecs - 1/x.data.fs, 2*len(x));

pl_spline = plistg'vertices',t)'

pl_nearest = plist 'vertices:,t,‘method','nearest');
x_spline interp(x,pl_spline);
X_nearest interp(x,pl_nearest);

iplot([x x_spline x_néarest], plist(“Markers®, {*x*, “o", "+°},
plot(l 'L%neCoIors', {"K", 'r'})g;

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/interp.htmI[10/08/2009 16:26:09]

matlab:doc('ao/interp')
matlab:doc('ao/interp')

Interpolating data (LTPDA Toolbox)

Figure 2
File Edit View Insert Tools Desktop Window Help

» Dgde kb &S09EL- @ O ald

Time origin: 1978-01-81 @080 ;606, BEE

-

.8 RT
8.6

I Y —IN—NDne
/ ;: W | =E=zpline(al)
nearestial’
8.4 % \
| 4

\

dmplitude [W]
&
H.
perem”

¥
L

5] b,z (5 B.6 B8
Time [=]

[«]Resampling data Spikes reduction in data[#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/interp.htmI[10/08/2009 16:26:09]

Spikes reduction in data (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Spikes reduction in data

Spikes in data due to different nature can be removed, if desired, from the original data. LTPDA
spikecleaning detects and replaces spikes of the input AOs. A spike in data is defined as a
single sample exceeding a certain value (usually, the floor noise of the data) defined by the
user:

T pr|)| = Kapike Tl pE

where =urr[n] is the input data high-pass filtered, #=i+- is a value defined by the user (by default
is 3.3) and 7urr is the standard deviation of =#rr[n | In consequence, a spike is defined as the
value that exceeds the floor noise of the data by a factor -, the higher of this parameter the
more difficult to "detect" a spike.

Syntaxis
b = ltpda_spikecleaning(a, pl)

With the following parameters:

e "kspike® - set the Fit- value (default is 3.3)
e "method” - method used to replace the "spiky" sample. Three methods are available ---see
below for details---:
= “random”
= "mean”
® "previous”
e ~fc- - frequency cut-off of the high-pass IIR filter (default is 0.025)
e “order” - specifies the order of the IIR filter (default is 2)
e “ripple" - specifies pass/stop-band ripple for bandpass and bandreject filters (default is
0.5)

Methods explained

1. Random : this method substitutes the spiky sample by:

zn] =zn—1]+ N0, 1) - oypr

where Vi, 1) is a random number of mean zero and standard deviation 1.

2. Mean : this method uses the following equation to replace the spike detected in data.

.-":.l.' - |: - .-":.l.' - _’
o

x[n] =

3. Previous : the spike is substitued by the previous sample, i.e.:

.l.' = .-":.l.' - |:

Examples

1. Spike cleaning of a sequence of random data with kspike=2.

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/spikeclean.html[10/08/2009 16:26:21]

matlab:doc('ao/spikecleaning')

Spikes reduction in data (LTPDA Toolbox)

’ x = ao(tsdata(randn(10000,1),1)); % create an AO of random data sampled at 1
Z.
pl = plist(); % create an_empty parameters list
pl = append(pl, param(“kspike®, 2)); % kspike=2))
) A0 y = Itpda_spikecleaning(x, pl); % spike cleaning function applied to the
input , X
iplot(x, y) % plot original and *“cleaned"” data
Time origin: 1970-01-01 00:00:00.000
5 None
= gpikecleaning(x)
4
. RN
2
= 1
8
= 0
o
E
<<

1
s

-2

-3 HH H

-4

-5
0 1000 2000 3000 4000 5000 6000 7000 BOOO 9000 10000
Time []

2. Example of real data: the first image shows data from the real world prior to the application
of the spike cleaning tool. It is clear that some spikes are present in data and might be
convenient to remove them. The second image shows the same data after the spike samples
supression.

Plot of time series AOs

22.6484 1 [— raw aatal/

Lk ‘|

22,6482 H

22,648 | — || | T

22,6478

22,6476

22,6474

226472

22.647

22.6468

22,6466
0 5 10 15
(sl x 10°

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/spikeclean.htmI[10/08/2009 16:26:21]

Spikes reduction in data (LTPDA Toolbox)

Plot of time series AOs

22,6481 -

22.6481

22.6481

22.6481

T 22648

22.648

22.648

22.648

22.648

[s] x 10’

[#]Interpolating data Data gap filling

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/spikeclean.htmI[10/08/2009 16:26:21]

Data gap filling (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Data gap filling

Gaps in data can be filled with interpolated data if desired. LTPDA gapfilling joints two AOs by
means of a segment of synthetic data. This segment is calculated from the two input AOs. Two
different methods are possible to fill the gap in the data: 1inear and spline. The former fills the
data by means of a linear interpolation whereas the latter uses a smoother curve —---see
examples below.

Syntaxis
b = ltpda_gapfilling(al, a2, pl)

where a1 and a2 are the two segments to joint. The parameters are:

e "method" - method used to interpolate missing data (see below for details)
= "linear”
(default option)
= “spline”
e "addnoise" - with this option noise can be added to the interpolated data. This noise is
defined as a
random variable with zero mean and variance equal to the high-frequency noise of the
input AO.

Interpolation methods

1. Linear :
. Fa — I
Eogap|hi| = n+x 4+ TrrpF
c e — 1
x !
.'|l
¢
X i X /
i gap
T : ___,-*/
Xo [-ommmmm e Fo-o-o- —
nl -~ n

2. Spline (or third order interpolation) :

] A 2
Toapn =an” +n” +en+d+oypr

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/gapfill.htmI[10/08/2009 16:26:30]

matlab:doc('ao/gapfilling')

Data gap filling (LTPDA Toolbox)

The parameters a, b, c and d are calculated by solving next system of equations:

J’-:.'.n.ﬂ[”t_ = I
J:f.'.w[”z: = I3
dr e 4 p(n] dxy [n] |
dn — dn —
dz g ap(n) ‘ dzs[n] |
an — in S
X [1
X
gap
ooy
-
‘-
I e e
1
1
1
1
1
i
1
]
1
: -
n
2 n

Examples

1. Missing data between two vectors of random data interpolated with the 1inear method.

Time origin: 1970-01-01 00:00:00.000

al
| — g(split{at), spiit{al))

Amplitude [V]
o

-1

-2

-3 '|'|'|| " | L L

-4
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time [s]

2. Missing data between two data vectors interpolated with the spline method.

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/gapfill.htmI[10/08/2009 16:26:30]

Data gap filling (LTPDA Toolbox)

Time origin: 1970-01-01 00:00:00.000

—— interpolated
—— original

Amplitude [V]

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time [s]

[#]Spikes reduction in data Noise whitening [#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/gapfill.htmI[10/08/2009 16:26:30]

Noise whitening (LTPDA Toolbox)

LTPDA Toolbox contents [«]
Noise whitening
Noise whitening tools in LTPDA are:
e WhitenlD
e Whiten2D
whiten1D[#]

[« Data gap filling

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/whitening.html[10/08/2009 16:26:36]

Noise whitening (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/whitening.html[10/08/2009 16:26:36]

whiten1D (LTPDA Toolbox)

LTPDA Toolbox contents

whitenlD

e Description
e Call

e |nputs

e Qutputs

e Algorithm
e Parameters

e Example

Description

whiten1D whitens input time-series. Whitening filter is constructed by a fitting procedure to the
model provided. If no model is provided, a fit is made to a log-spectral-density estimate of the
time-series (made using Ipsd). Note: The function assumes that the input model corresponds to the
one-sided psd of the data to be whitened.

Call

b = whitenlD(a, pl%_

[bl,b2,...,bn] = whitenlD(al,a2,...,an, pl);
Inputs

e a - is a tsdata analysis object or a vector of tsdata analysis objects
e pl - is a plist with the input parameters. See the list of function parameters below

Outputs

* b "whitened" time-series AOs. The whitening filters used are stored in the objects procinfo
field under the parameter 'Filt'.

Algorithm

1. If no model provided, make Ipsd of time-series and take it as a model for the data power
spectral density

2. Fit a set of partial fraction z-domain filters using utils.math.psd2wf. The fit is automatically
stopped when the accuracy tolerance is reached.

3. Convert to bank of MIIR filters.

4. Filter time-series in parallel

Accuracy tolerance criteria

¢ No model provided
In such a case the algorithm try to extract a smooth model from Ipsd noisy data. Fit residuals
spectral flatness is compared with the 'FitTolerance' parameter. Fit is stopped when residuals
spectral flatness is larger than the 'FitTolerance' parameter. Admitted values are 0 < tol < 1.
Recommended values are 0.5 < tol < 0.7. If out of range values are provided the parameter is
set to 0.5.

e Model provided
In such a case the algorithm try to exactly fit the input model whitin the accuracy reported in
'FitTolerance'. Check if the minimum of the logarithmic difference between data and residuals is

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/whiten1D.htmI[10/08/2009 16:26:42]

whiten1D (LTPDA Toolbox)

larger than a specified value. Admitted values are tol>0. Recommended values are 0.5 < tol <
2. if the conditioning value is 2, the function ensures that the difference between data and
residuals is at lest 2 order of magnitude lower than data itsleves. If a negative value is provided
the tolerance is set to 1.

Parameters

e 'Model' - a frequency-series AO describing the model response to build the filter from.
[default: Ipsd of time-series].
e 'Maxlter' - Maximum number of iterations in fit routine [default: 30]
* 'PoleType' - Choose the pole type for fitting:
= 1 - use real starting poles.
= 2 - generates complex conjugate poles of the type a.*exp(theta*pi*j) with theta
linspace(0,pi,N/2+1).
= 3 - generates complex conjugate poles of the type a.*exp(theta*pi*j) with theta
linspace(0,pi,N/2+2) [default].
e 'MinOrder' - Minimum order to fit with. [default: 2].
¢ 'MaxOrder' - Maximum order to fit with. [default: 25]
* 'Weights' - choose weighting for the fit: [default: 2]
= 1 - equal weights for each point.
= 2 - weight with 1/abs(model).
= 3 - weight with 1/abs(model).A2.
= 4 - weight with inverse of the square mean spread of the model.
» 'Plot' - plot results of each fitting step. [default: false]
e 'Disp' - Display the progress of the fitting iteration. [default: false]
» 'FitTolerance' - Stopping fit tolerance condition. Be sure to read the algorithm description to
provide the correct value. [default: 0.6]
* 'RMSEVar' - Root Mean Squared Error Variation - Check if the variation of the RMS error is
smaller than 10A(-b), where b is the value given to the variable. This option is useful for
finding the minimum of Chi squared. [default: 7].

parameters passed to Ipsd()

* 'Jdes' - The number of points in the power spectrum. [default: help Ipsd].
e 'Win' - Spectral window used in spectral estimation. [default: help Ipsd].
e 'Order' - order of segment detrending: [default: help Ipsd]

= -1 - no detrending

= 0 - subtract mean

» 1 - subtract linear fit

= N - subtract fit of polynomial, order N

Example

? Genirate white noise
s = 1;
a = ao(plist("tsfcn”, "randn(size(t))", "fs", fs, "nsecs”, 10000, “yunits®,"m"));

pzm 2o del(1le-2, {0.01}, {0.1}p)
pzm = pzmodel(le-2, - 5 5 c
ft = m?ir(pzm,plist('fs', s));

% coloring white noise
af = filter(a, ft);

% Whitening colored noise

pl = plist(...
“"model™, [1, ---
"Maxlter®, 30,
"PoleType®, 2,
*MinOrder®, 2,
"MaxOrder®, 9,
"Weights", 2, ...
"Plot", false,...
"Disp”, false,...
"RMSEvVar*®, 3,...
"FitTolerance®, 0.6); % tolerancee on fit residuals spectral flatness

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/whiten1D.htmI[10/08/2009 16:26:42]

whiten1D (LTPDA Toolbox)

aw = whitenlD(af,pl);

% Calculate psd of colored and whitened data

afxx = af.psd;
awxx = aw.psd;

% plotting
iplot(afxx,awxx)

10°

10°

10*

10°

—— PSD(af)

—— PSD(whiten1D(af))

[®]Noise whitening

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/whiten1D.htmI[10/08/2009 16:26:42]

10° 10*
Frequency [Hz|

10™

10°

whiten2D [#]

whiten2D (LTPDA Toolbox)

LTPDA Toolbox contents [€]

whiten2D

Description
Call

Inputs
Qutputs

Algorithm
Parameters

Description

whiten2D whitens cross-correlated time-series. Whitening filters are constructed by a fitting
procedure to the corss-spectrum models provided. Note: The function assumes that the input
model corresponds to the one-sided csd of the data to be whitened.

Call
b = whiten2D(a, pl)
[bl,bZ] = whiten2D(al, a2, pl)
bl,b2,..., bn] = whiten2D(al,a2,..., an, pb);

e Notel: input AOs must come in couples.
e Note2: this method cannot be used as a modifier, the call a.whiten2D(pl) is forbidden.

Inputs

e ais at least a couple of time series analysis objects
e plis a parameter list, see the list of accepted parameters below

Outputs

e b is at least a couple of "whitened" time-series AOs. The whitening filters used are stored
in the objects procinfo field as.
= b(1): 'Filtll" and 'Filt12'
= b(2): 'Filt21" and 'Filt22'

Algorithm

1. Fit a set of partial fraction z-domain filters using utils.math.psd2wf
2. Convert to bank of mlIR filters
3. Filter time-series in parallel The filtering process is:

b(1) = Filt11(a(1)) + Filt12(a(2))

b(2) = Filt21(a(1)) + Filt22(a(2))

Parameters
e 'csdll' - a frequency-series AO describing the model csd11

e 'csd12' - a frequency-series AO describing the model csd12
e 'csd21' - a frequency-series AO describing the model csd21

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/whiten2D.htmI[10/08/2009 16:26:47]

whiten2D (LTPDA Toolbox)

'csd22' - a frequency-series AO describing the model csd22
e 'Maxlter' - Maximum number of iterations in fit routine [default: 30]
» 'PoleType' - Choose the pole type for fitting:
= 1 - use real starting poles.
= 2 - generates complex conjugate poles of the type a.*exp(theta*pi*j) with theta =
linspace(0,pi,N/2+1).
= 3 - generates complex conjugate poles of the type a.*exp(theta*pi*j) with theta =
linspace(0,pi,N/2+2) [default].

e 'MinOrder' - Minimum order to fit with. [default: 2].

e 'MaxOrder' - Maximum order to fit with. [default: 25]

e 'Weights' - choose weighting for the fit: [default: 2]

= 1 - equal weights for each point.

= 2 - weight with 1/abs(model).

= 3 - weight with 1/abs(model).A2.

= 4 - weight with inverse of the square mean spread of the model.

e 'Plot' - plot results of each fitting step. [default: false]

» 'Disp' - Display the progress of the fitting iteration. [default: false]

» 'FitTolerance' - Log Residuals difference check if the minimum of the logarithmic
difference between data and residuals is larger than a specified value. ie. if the
conditioning value is 2, the function ensures that the difference between data and
residuals is at lest 2 order of magnitude lower than data itsleves. [default: 2].

e 'RMSEVar' - Root Mean Squared Error Variation - Check if the variation of the RMS error is
smaller than 10A(-b), where b is the value given to the variable. This option is useful for
finding the minimum of Chi squared. [default: 7].

e 'UseSym' - Use symbolic calculation in eigendecomposition. [default: 0]

= 0 - perform double-precision calculation in the eigendecomposition procedure to
identify 2dim systems and for poles stabilization

= 1 - uses symbolic math toolbox variable precision arithmetic in the
eigendecomposition for 2dim system identification and double-precison for poles
stabilization

= 2 - uses symbolic math toolbox variable precision arithmetic in the
eigendecomposition for 2dim system identification and for poles stabilization

[®]whiten1D Signal Processing in LTPDA [#]

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/whiten2D.htmI[10/08/2009 16:26:47]

Signal Processing in LTPDA (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Signal Processing in LTPDA

The LTPDA Toolbox contains a set of tools to characterise digital data streams within the
framework of LTPDA Objects. The current available methods can be grouped in the following
categories:

» Digital filtering
e Discrete Derivative

e Spectral estimation
» Fitting algorithms

[€lwhiten2D Digital Filtering[#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/sigproc.html[10/08/2009 16:26:53]

Signal Processing in LTPDA (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/sigproc.html[10/08/2009 16:26:53]

Digital Filtering (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Digital Filtering

A digital filter is an operation that associates an input time series x[n] into an output one, y[n].
Methods developed in the LTPDA Toolbox deal with linear digital filters, i.e. those which fulfill
that a linear combination of inputs results in a linear combination of outputs with the same
coefficients (provided that these are not time dependent). In these conditions, the filter can be
expressed as

(s a)

ylnl = > hlk]z[n — k]

k=—oc
described in these terms, the filter is completely described by the impulse response h[k], and
can then be subdivided into the following classes:

e Causal: if there is no output before input is fed in.

hik] =0, k<0
e Stable: if finite input results in finite output.
D" hlk] < oo
k=—pa
o Shift invariant: if time shift in the input results in a time shift in the output by the same
amount.
l[k] = h[—k]

Digital filters classification

Digital filters can be described as difference equations. If we consider an input time series x
and an output y, three specific cases can then be distinguished:

» Autoregressive (AR) process: the difference equation in this case is given by:
it
yln] =) _blk] yn — &]
k=1

AR processes can be also classified as IIR Filters.

* Moving Averrage (MA) process:the difference equation in this case is given by:

N
yln] = D _alk] z[n — &]
k=0
MA processes can be also classified as FIR Filters.

» Autoregressive Moving Average (ARMA) process: the difference equation in this case
contains both an AR and a MA process:

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/sigproc_dfilt.htmI[10/08/2009 16:27:01]

Digital Filtering (LTPDA Toolbox)

kL

N
yln] = _ bkl z[n — k] — Y _ alk]y[n — k|
k=0

k=1

[#]Signal Processing in LTPDA lIR Filters [#]

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/sigproc_dfilt.htmI[10/08/2009 16:27:01]

IIR Filters (LTPDA Toolbox)

LTPDA Toolbox contents [€]

IIR Filters

Infinite Impulse Response filters are those filters present a non-zero infinite length response
when excited with a very brief (ideally an infinite peak) input signal. A linear causal IIR filter
can be described by the following difference equation

M

N
yln] = _ bl z[n — k] —) _ alk]yln — k]
k=0 k=1
This operation describe a recursive system, i.e. a system that depends on current and past
samples of the input x[n], but also on the output data stream y[n].

Creating a IIR filter in the LTPDA
The LTPDA Toolbox allows the implementation of IIR filters by means of the miir class.

Creating from a plist

The following example creates an order 1 highpass filter with high frequency gain 2. Filter is
designed for 10 Hz sampled data and has a cut-off frequency of 0.2 Hz.

>> pl = p{ist('type', "highpass®, ...

“order”,
'%aln', 2.0,
"Ts®, 10,
“fc", 0.2);

>> f = miir(pi)

Creating from a pzmodel
[IR filters can also be created from a pzmodel .

Creating from a difference equation

Alternatively, the filter can be defined in terms of two vectors specifying the coefficients of the
filter and the sampling frequency. The following example creates a IIR filter with sampling
frequency 1 Hz and the following recursive equation:

y[n| = 0.5z[r] — 0.01lzn — 1] — 0.1y[n — 1]

>> g = [0-5 -0.01];
>> b = [1 0.1];

>> fs = 1;

>> f = miir(a,b,fs)

Notice that the convetion used in this function is the one described in the Digital filters
classification section

Importing an existing model

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/sigproc_iir.html[10/08/2009 16:27:08]

IIR Filters (LTPDA Toolbox)
The miir constructor also accepts as an input existing models in different formats:

LISO files:

>> F = miir("foo_iir.fil")

XML files:

>> F = miir("foo_iir.xml")

MAT files:

>> f = miir("foo_iir.mat")
e From repository:

>> F = miir(plist(“hostname®, “localhost®, “database®, "ltpda®, "ID", [1))

[«] Digital Filtering FIR Filters [#]

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/sigproc_iir.html[10/08/2009 16:27:08]

FIR Filters (LTPDA Toolbox)

LTPDA Toolbox contents [€]

FIR Filters

Finite Impulse Response filters are those filters present a non-zero finite length response when
excited with a very brief (ideally an infinite peak) input signal. A linear causal FIR filter can be
described by the following difference equation

A

=) bk z[n — k]

k=0
This operation describe a nonrecursive system, i.e. a system that only depends on current and
past samples of the input data stream x[n]

Creating a FIR filter in the LTPDA

The LTPDA Toolbox allows the implementation of FIR filters by means of the mfir class.

Creating from a plist

The following example creates an order 64 highpass filter with high frequency gain 2. The filter
is designed for 1 Hz sampled data and has a cut-off frequency of 0.2 Hz.

>> pl = pllst(type”®, highpass',
order -
%aln 2 0

"fc* O 2)
>> f = mflr(pl)
Creating from a difference equation

The filter can be defined in terms of two vectors specifying the coefficients of the filter and the
sampling frequency. The following example creates a FIR filter with sampling frequency 1 Hz
and the following recursive equation:

y[n] = —0.8z[n] + 10 z[n — 1]

> b = [0.8 10];
>> fs =
> f = mflr(b Ts)

Creating from an Analysis Object

A FIR filter can be generated based on the magnitude of the input Analysis Object or fsdata
object. In the following example a fsdata object is first generated and then passed to the mfir
constructor to obtain the equivalent FIR filter.

>> fs = 10; % sampling frequency

>> F = Iinspace(O fs/2, 1000);

>y = 1./(1+(0.1*2* *f) ~2); % an arbitrary function
>> fsd = fsdata(f,y,fs % build the fsdata object

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/sigproc_fir.html[10/08/2009 16:27:14]

FIR Filters (LTPDA Toolbox)

>> f = mFir(ao(fsd));

Available methods for this option are: 'frequency-sampling' (uses fir2), 'least-squares' (uses
firls) and 'Parks-McClellan' (uses firpm)

Importing an existing model
The mfir constructor also accepts as an input existing models in different formats:

LISO files:

>> f = mFir("foo_Ffir.fil")

XML files:

>> F = mFir("foo_fir.xml*)

MAT files:
>> F = mFir("foo_fir.mat")
e From repository:

>> f = mFir(plist("hostname®, "localhost®, "database®, "ltpda®, "ID", [D))

[€]1IR Filters Discrete Derivative [#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/sigproc_fir.html[10/08/2009 16:27:14]

Discrete Derivative (LTPDA Toolbox)

LTPDA Toolbox contents

Discrete Derivative

Derivative calculation for dicrete data series.

e Description
Call

Inputs

[]

e Qutputs

¢ Parameters
[]

[]

Algorithm
References

Description

Derivative estimation on discrete data series is implemented by the function aosdiff. This function
implements several algorithms for the calculation of zero, first and second order derivative. Where
with zero order derivative we intend a particular category of data smoothers [1].

Call

b = diff(a,gli
[bl,b2,..., n] = diff(al,a2, ..., an, pb);

Inputs

e a - is an analysis object or a vector of analysis objects
e pl - is a plist containing input parameters. See the list of function parameters below.

Outputs

e b - output analysis objects containing the differentiated data.

Parameters
Key Parameter Values
Value Description
'2POINT' Two point derivative.
'3POINT' Three point derivative.
'5POINT' 5 point derivative.
'ORDER2’ Compute derivative using a 2nd order
method.
'ORDER2SMOOTH' Compute derivative using a 2nd order
method with a parabolic fit to 5
consecutive samples.
'METHOD'
'FPS' Calculate five points derivative using

the generalized five point method

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/sigproc_diff.html[10/08/2009 16:27:24]

Discrete Derivative (LTPDA Toolbox)

described in [1]. If you call with this
oprtion you may add also the
parameters:

e 'ORDER'
Supperted values are:
= 'ZERQO' - Data smoother
= 'FIRST' - First Derivative
= 'SECOND' - Second Derivative
e 'COEFF' - coefficient used for the
derivative

Algorithm
Method Description
"2POINT' Compute first derivative with two point equation according to:

"3POINT'

'5POINT'

'FPS'

dy[k] | y[k+1] - y[K]
dx x[fc+1]—x[fc]

Compute first derivative with three point equation according to:

dy[k] , y[E+1] -y [k-1]
cx x[fc+1]—x[k—1]

Compute first derivative with five point equation according to:

dy[k] N -y[k+2] +8y[k+1]-8y[k—1] +y[fc—2]
dx 3(x[k+2]-x[k-2])

Five Point Stencil is a generalized method to calculate zero, first
and second order discrete derivative of a given time series.
Derivative approximation, at a given time t = kT (k being an integer
and T being the sampling time), is calculated by means of finite
differences between the element at t with its four neighbors:

y[] ay[fc 2]+by[k]+cy[k]+cfy[k+1]+gy[k+2]
ai'y[fc] ay[k=2]+by[k-1]+ecy[k] +dy[k +1]+gy[k+2]

at T
dlylk] a'plk-2]+b[k -]+ y[k]+dy[k+1]+ gy [k +2]
dt* T

It can be demonstrated that the coefficients of the expansion can
be expressed as a function of one of them [1]. This allows the
construction of a family of discrete derivative estimators
characterized by a good low frequency accuracy and a smoothing
behavior at high frequencies (near the nyquist frequency).
Non-trivial values for the 'COEFF' parameter are:

e Parabolic fit approximation

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/sigproc_diff.html[10/08/2009 16:27:24]

Discrete Derivative (LTPDA Toolbox)

These coefficients can be obtained by a parabolic fit procedure
on a generic set of data [1].
= Zeroth order -3/35
= First order -1/5
= Second order 1/7
e Taylor series expansion
These coefficients can be obtained by a series expansion of a
generic set of data [1 - 3].
= First order 1/12
= Second order -1/12
e PI
This coefficient allows to define a second derivative estimator
with a notch feature at the nyquist frequency [1].
= Second order 1/4

Frequency response of first and second order estimators is reported in figures 1 and 2 respectively.

10°
‘Tm 10°
e ==
g ’/"' N
=
= | et
= '___,..--'—’
2407]
E _..--""""d_-.r.-'#‘
—‘.-—’
—2POINT
10™ 5 ——ORDER2 . . .
10 —— ORDER2SMOOTH 10 10 10
IPOINT Frequency [Hz]
——5POINT
200 ——FPS - PARFIT
——FPS - TAYLOR P
L1
——Theory '%..-
100 L
E — — e j J/_J_
I e
@ 0 — |
=3
2 100 /
/]
=200
10° 10° 10° 10" 10°

Frequency [Hz]

Figure 1: Frequency response of first derivative estimators.

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/sigproc_diff.html[10/08/2009 16:27:24]

Discrete Derivative (LTPDA Toolbox)

2
10 (T T T TII
—— Theory y
—FPS - PARFIT P
10° FPS - Pl A
FPS - TAYLOR Lt (|
h",g, 10°
@
=
=
i . | -~
= 10 b
o e
10°
107 10° 10” 10" 10°
Frequency [HZ]
Figure 2: Frequency response of second derivative estimators.
References

1. L. Ferraioli, M. Hueller and S. Vitale, Discrete derivative estimation in LISA Pathfinder data
reduction, Class. Quantum Grav., 7th LISA Symposium special issue.
L. Ferraioli, M. Hueller and S. Vitale, Discrete derivative estimation in LISA Pathfinder data
reduction arXiv:0903.0324v1

2. Steven E. Koonin and Dawn C. Meredith, Computational Physics, Westview Press (1990).

3. John H. Mathews, Computer derivations of numerical differentiation formulae, Int. J. Math. Educ.
Sci. Technol., 34:2, 280 - 287.

FIR Filters Spectral Estimation[#]

©LTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/sigproc_diff.html[10/08/2009 16:27:24]

matlab:web('http://arxiv.org/abs/0903.0324v1')

Spectral Estimation (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Spectral Estimation

Spectral estimation is a branch of the signal processing, performed on data and based on
frequency-domain techniques. Within the LTPDA toolbox many functions of the Matlab Signal
Processing Toolbox (which is required) were rewritten to operate on LTPDA Analysis Objects.
Univariate and multivariate technique are available, so to estimate for example the linear power
spectral density or the cross spectral density of one or more signals. The focus of the tools is
on time-series objects, whose spectral content needs to be estimated.

The power spectrum density estimators are based on pwelch from MATLAB, which is an
implementation of Welch's averaged, modified periodogram method. More details about
spectral estimation techniques can be found here.

The following pages describe the different Welch-based spectral estimation ao methods
available in the LTPDA toolbox:

* ao/psd power spectral density estimates
* ao/cpsd cross-spectral density estimates

* ao/cohere magnitude squared coherence estimates
e ao/tfe transfer function estimates

As an alternative, the LTPDA toolbox makes available the same set of estimators, based on an
implementation of the LPSD algorithm (See "Improved spectrum estimation from digitized time
series on a logarithmic frequency axis", M Troebs, G Heinzel, Measurement 39 (2006) 120-
129).

The following pages describe the different LPSD-based spectral estimation ac methods
available in the LTPDA toolbox:

* ao/lpsd log-scale power spectral density estimates

* ao/lcpsd log-scale cross-spectral density estimates

* ao/lcohere log-scale magnitude squared coherence estimates
* ao/ltfe log-scale transfer function estimates

More detailed help on spectral estimation can also be found in the help associated with the
Signal Processing Toolbox (>> doc signal)

[#]Discrete Derivative Introduction [#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/sigproc_spec.html[10/08/2009 16:27:29]

matlab:web('http://www.lisa.aei-hannover.de/details/132.pdf')
matlab:web('http://www.lisa.aei-hannover.de/details/132.pdf')

Spectral Estimation (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/sigproc_spec.html[10/08/2009 16:27:29]

Introduction (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Introduction

This introduction is directly adapted from Matlab documentation regarding the Signal
Processing Toolbox. More detailed description, including the whole document referred before,

can be found typing:

>> doc signal

in the Matlab terminal.

On this page...

Background Information
Spectral Estimation Methods

Nonparametric Methods
References

Background Information

The goal of spectral estimation is to describe the distribution (over frequency) of the power
contained in a signal, based on a finite set of data. Estimation of power spectra is useful in a
variety of applications, including the detection of signals buried in wide-band noise.

Power Spectral Density Function

The power spectral density (PSD) of a stationary random process x, is mathematically related to
the correlation sequence by the discrete-time Fourier transform. In terms of normalized
frequency, this is given by

1 i
P"L'Lr:]=z_ z R_(m)e ™"

T =—=

This can be written as a function of physical frequency f (e.g., in hertz) by using the relation
w = 21f/ f;, where f; is the sampling frequency.

1 2 i
Po(f)=— ¥, Ry lmye 2®m/L

8 m=—w

The correlation sequence can be derived from the PSD by use of the inverse discrete-time
Fourier transform:

x f12 _
Rpe(m) = | (Po(le™™)dew=" | (Pu(f1e*™ F)f
- .12

The average power of the sequence x,, over the entire Nyquist interval is represented by
2

e
Re(0) = | Pylwidw= | P (f)df

£
x —fi2

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/sigproc_intro.htmI[10/08/2009 16:27:54]

Introduction (LTPDA Toolbox)

The average power of a signal over a particular frequency band [©1-¢e] 0<w;<ws=<m can be
found by integrating the PSD over that band:

Wy —a
F[ml.mg] = J‘Pl._l.[mjdm+ J‘Pl._l.[m;ldm
(14}] —illa

You can see from the above expression that P,,(w) represents the power content of a signal in
an infinitesimal frequency band, which is why it is called the power spectral density.

The units of the PSD are power (e.g., watts) per unit of frequency. In the case of P,,(w), this is
watts/radian/sample or simply watts/radian. In the case of P,,(f), the units are watts/hertz.

Integration of the PSD with respect to frequency yields units of watts, as expected for the
average power Plus w,

For real signals, the PSD is symmetric about DC, and thus P,,(w) for 0= w<= is sufficient to

completely characterize the PSD. However, to obtain the average power over the entire Nyquist
interval, it is necessary to introduce the concept of the one-sided PSD.

The one-sided PSD is given by
Panesiﬂ’ed[mJ = { 0

The average power of a signal over the frequency band [@1-ts] 0= w; <ws=7 can be computed
using the one-sided PSD as

Wa

P[“—‘J- w] = JPanes:'ded[w)dw

Wy

Cross-Spectral Density Function

The PSD is a special case of the cross spectral density (CPSD) function, defined between two
signals x,, and y, as

1 < :
Pry(@) =5 3, Ruyylm)e/™"

M=—=u

As is the case for the correlation and covariance sequences, the toolbox estimates the PSD and
CPSD because signal lengths are finite.

To estimate the cross-spectral density of two equal length signals x and y using Welch's
method, the cpsd function forms the periodogram as the product of the FFT of x and the
conjugate of the FFT of y. Unlike the real-valued PSD, the CPSD is a complex function. cpsd
handles the sectioning and windowing of x and y in the same way as the pwelch function:

Sxy = cpsd(x,y,nwin,noverlap,nfft,fs)

Transfer Function Estimate

One application of Welch's method is nonparametric system identification. Assume that His a
linear, time invariant system, and x(n) and y(n) are the input to and output of H, respectively.
Then the power spectrum of x(n) is related to the CPSD of x(n) and y(n) by

P, .o =HoP,., o

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/sigproc_intro.htmI[10/08/2009 16:27:54]

Introduction (LTPDA Toolbox)
An estimate of the transfer function between x(n) and y(n) is

i P im)
Him) =22
P (m)

This method estimates both magnitude and phase information. The tfe function uses Welch's
method to compute the CPSD and power spectrum, and then forms their quotient for the
transfer function estimate. Use tfe the same way that you use the cpsd function.

Coherence Function
The magnitude-squared coherence between two signals x(n) and y(n) is

- |P_1._5. l'm]|2

C = —
Pyl LI':‘]‘I;t'.'_'.' (m)

xy (m)

This quotient is a real number between 0 and 1 that measures the correlation between x(n) and
y(n) at the frequency w.

The cohere function takes sequences x and y, computes their power spectra and CPSD, and
returns the quotient of the magnitude squared of the CPSD and the product of the power
spectra. Its options and operation are similar to the cpsd and tfestimate functions.

If the input sequence length nfft, window length window, and the number of overlapping data
points in a window numoverlap, are such that cohere operates on only a single record, the
function returns all ones. This is because the coherence function for linearly dependent data is
one.

Spectral Estimation Methods

The various methods of spectrum estimation available in the toolbox are categorized as
follows:

* Nonparametric methods

Nonparametric methods are those in which the PSD is estimated directly from the signal itself.

The simplest such method is the periodogram. An improved version of the periodogram is
Welch's method [8].

Nonparametric Methods

The following sections discuss the periodogram, modified periodogram, and Welch methods of
nonparametric estimation.

Periodogram

In general terms, one way of estimating the PSD of a process is to simply find the discrete-time
Fourier transform of the samples of the process (usually done on a grid with an FFT) and take
the magnitude squared of the result. This estimate is called the periodogram.

The periodogram estimate of the PSD of a length-L signal x [n] is

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/sigproc_intro.htmI[10/08/2009 16:27:54]

Introduction (LTPDA Toolbox)

where

L-1 _
Xrpify= E .I;L[n]e_h‘rfnff‘
n=10
The actual computation of X (f) can be performed only at a finite number of frequency

points, N, and usually employs the FFT. In practice, most implementations of the periodogram
method compute the N-point PSD estimate

2
. X k
Boatfy = LU fi = % kE=01..N-1

fgL L] L]
where
N1 Srjkn /N
Xplfal = Y aglnle 27
n=10

It is wise to choose N > L so that N is the next power of two larger than L. To evaluate X [f],
we simply pad x| [n] with zeros to length N. If L > N, we must wrap x;[n] modulo-N prior to
computing X [f.].

Performance of the Periodogram

The following sections discuss the performance of the periodogram with regard to the issues of
leakage, resolution, bias, and variance.

Spectral Leakage. Consider the PSD of a finite-length signal x,[n], as discussed in the
Periodogram section. It is frequently useful to interpret x,[n] as the result of multiplying an
infinite signal, x[n], by a finite-length rectangular window, wg[n]:

.IZL[.P‘J] = x[n] -wﬂ[n]
Because multiplication in the time domain corresponds to convolution in the frequency domain,
the Fourier transform of the expression above is

1 fa2
Xrif)= 7 _[Xip)Wpg(f -pidp
2

The expression developed earlier for the periodogram,

X (A

P'L'I.if.] = fSL

illustrates that the periodogram is also influenced by this convolution.

The effect of the convolution is best understood for sinusoidal data. Suppose that x[n] is
composed of a sum of M complex sinusoids:

M .
x[n] = Z AkeJm*n
k=1

Its spectrum is

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/sigproc_intro.htmI[10/08/2009 16:27:54]

Introduction (LTPDA Toolbox)

M

Xif)=f. Y Apdif -1

k=1
which for a finite-length sequence becomes

2y

x

M
Xp(fi= J ZAkaip—fk]
- k=1

¥

M
Rf—pidp =Y AWg(f-fi)
k=1

So in the spectrum of the finite-length signal, the Dirac deltas have been replaced by terms of
the form Wa(f 1), which corresponds to the frequency response of a rectangular window
centered on the frequency f.

The frequency response of a rectangular window has the shape of a sinc signal, as shown
below.

a

-10

"33 3 ll:u 035

The plot displays a main lobe and several side lobes, the largest of which is approximately
13.5 dB below the mainlobe peak. These lobes account for the effect known as spectral

leakage. While the infinite-length signal has its power concentrated exactly at the discrete
frequency points fi, the windowed (or truncated) signal has a continuum of power "leaked"

around the discrete frequency points f.

Because the frequency response of a short rectangular window is a much poorer approximation
to the Dirac delta function than that of a longer window, spectral leakage is especially evident
when data records are short.

It is important to note that the effect of spectral leakage is contingent solely on the length of
the data record. It is not a consequence of the fact that the periodogram is computed at a finite
number of frequency samples.

Resolution. Resolution refers to the ability to discriminate spectral features, and is a key
concept on the analysis of spectral estimator performance.

In order to resolve two sinusoids that are relatively close together in frequency, it is necessary
for the difference between the two frequencies to be greater than the width of the mainlobe of
the leaked spectra for either one of these sinusoids. The mainlobe width is defined to be the
width of the mainlobe at the point where the power is half the peak mainlobe power (i.e., 3 dB
width). This width is approximately equal to f; / L.

In other words, for two sinusoids of frequencies f; and f,, the resolvability condition requires
that

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/sigproc_intro.htmI[10/08/2009 16:27:54]

Introduction (LTPDA Toolbox)

Af = (fy —f23>%

In the example above, where two sinusoids are separated by only 10 Hz, the data record must
be greater than 100 samples to allow resolution of two distinct sinusoids by a periodogram.

The above discussion about resolution did not consider the effects of noise since the signal-
to-noise ratio (SNR) has been relatively high thus far. When the SNR is low, true spectral
features are much harder to distinguish, and noise artifacts appear in spectral estimates based
on the periodogram. The example below illustrates this:

randn("state”,0)

fs = 1000; % Sampling frequency

t = (0:fs/10)./fs; % One-tenth second worth of samples
A =11 2]; % Sinusoid amplitudes

f = [150;140]; % Sinusoid frequencies

xn = A*sin(2*pi*f*t) + 2*randn(size(t));
Hs=spectrum.periodogram;
psd(Hs,xn,"Fs",fs, *"NFFT*",1024)

_ioix

File Edit Wiew Insert Tools Deskkop Window Help "
DEeEE K RaAMe (¥ 08B 8O

Feriodogram Power Spectral Density Estimate
5 I I I I I I I I I

-10
-15

20| p-- et

-25

-30

-35 - -

Fowerfrequency (dBE/Hz)

A0 k-]

A5 -

-50

) I T T S R AN S A R
a a0 100 150 200 250 300 350 400 450 500
Frequency (Hz)

Bias of the Periodogram. The periodogram is a biased estimator of the PSD. Its expected
value can be shown to be

! fort
X1 (f) 1
L - 2
E{ } = F.L J P.l'.r[l:‘J _Eif_l:‘:'| dp
g

f.L
2

which is similar to the first expression for X|(f) in Spectral Leakage, except that the expression

here is in terms of average power rather than magnitude. This suggests that the estimates
produced by the periodogram correspond to a leaky PSD rather than the true PSD.

- 2
Note that |Wr(F=#)| essentially yields a triangular Bartlett window (which is apparent from the

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/sigproc_intro.htmI[10/08/2009 16:27:54]

Introduction (LTPDA Toolbox)

fact that the convolution of two rectangular pulses is a triangular pulse). This results in a height
for the largest sidelobes of the leaky power spectra that is about 27 dB below the mainlobe
peak; i.e., about twice the frequency separation relative to the non-squared rectangular
window.

The periodogram is asymptotically unbiased, which is evident from the earlier observation that
as the data record length tends to infinity, the frequency response of the rectangular window
more closely approximates the Dirac delta function (also true for a Bartlett window). However,
in some cases the periodogram is a poor estimator of the PSD even when the data record is
long. This is due to the variance of the periodogram, as explained below.

Variance of the Periodogram. The variance of the periodogram can be shown to be
approximately

X, (F)
Uﬂ-r{ fSL }

e Eccany

-‘- Lein(2nf/f_)

which indicates that the variance does not tend to zero as the data length L tends to infinity. In
statistical terms, the periodogram is not a consistent estimator of the PSD. Nevertheless, the
periodogram can be a useful tool for spectral estimation in situations where the SNR is high,
and especially if the data record is long.

The Modified Periodogram

The modified periodogram windows the time-domain signal prior to computing the FFT in
order to smooth the edges of the signal. This has the effect of reducing the height of the
sidelobes or spectral leakage. This phenomenon gives rise to the interpretation of sidelobes as
spurious frequencies introduced into the signal by the abrupt truncation that occurs when a
rectangular window is used. For nonrectangular windows, the end points of the truncated
signal are attenuated smoothly, and hence the spurious frequencies introduced are much less
severe. On the other hand, nonrectangular windows also broaden the mainlobe, which results
in a net reduction of resolution.

The periodogram function allows you to compute a modified periodogram by specifying the
window to be used on the data. For example, compare a default rectangular window and a
Hamming window:

randn(state”,0)

fs = 1000; % Sampling frequency

t = fs/lO) /Ts; % One-tenth second worth of samples
A=]1 % Sinusoid amplitudes

f = 150 140] % Sinusoid frequencies

Xxn = A*S|n(2*p|*f*t) + 0.1*randn(size(t));
Hrect = spectrum.periodogram;
psd(Hrect,xn, "Fs*® ,fs, "NFFT" 1024);

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/sigproc_intro.htmI[10/08/2009 16:27:54]

Introduction (LTPDA Toolbox)

File Edit %iew Insert Tools Deskkop Window Help

=101 %]

DEESES K RAN® £ |08 0O

Feriodogram Power Spectral Density Estimate

Fower/freguency (dBE/Hz)

. Y Ut SR

-0 | | | | I | |
a a0 100 150 200 250 300 350
Frequency (Hz)

a00

Hhamm = spectrum.periodogram("Hamming®);
psd(Hhamm,xn, *Fs*,fs, "NFFT" ,1024) ;

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/sigproc_intro.htmI[10/08/2009 16:27:54]

Introduction (LTPDA Toolbox)

<) Figure 1 =10l x|
File Edit %iew Insert Tools Deskkop Window Help N

DEESES K RAN® £ |08 0O

Feriodogram FPower Spectral Density D&stimate
I

Fower/freguency (dBE/Hz)

-0 | | | | I | | | |
a a0 100 150 200 250 300 350 400 450 500
Frequency (Hz)

You can verify that although the sidelobes are much less evident in the Hamming-windowed
periodogram, the two main peaks are wider. In fact, the 3 dB width of the mainlobe
corresponding to a Hamming window is approximately twice that of a rectangular window.
Hence, for a fixed data length, the PSD resolution attainable with a Hamming window is
approximately half that attainable with a rectangular window. The competing interests of
mainlobe width and sidelobe height can be resolved to some extent by using variable windows
such as the Kaiser window.

Nonrectangular windowing affects the average power of a signal because some of the time
samples are attenuated when multiplied by the window. To compensate for this, the periodogram
function normalizes the window to have an average power of unity. This way the choice of
window does not affect the average power of the signal.

The modified periodogram estimate of the PSD is

. X ifJE
P'I.'l.i.f-] = ETU]

where U is the window normalization constant

I =

[~

L-1 .
Y lwin)]
n=10

which is independent of the choice of window. The addition of U as a normalization constant
ensures that the modified periodogram is asymptotically unbiased.

Welch's Method

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/sigproc_intro.htmI[10/08/2009 16:27:54]

Introduction (LTPDA Toolbox)

An improved estimator of the PSD is the one proposed by Welch [8]. The method consists of
dividing the time series data into (possibly overlapping) segments, computing a modified
periodogram of each segment, and then averaging the PSD estimates. The result is Welch's PSD
estimate.

Welch's method is implemented in the toolbox by the spectrum.welch object or pwelch function.
By default, the data is divided into eight segments with 50% overlap between them. A Hamming
window is used to compute the modified periodogram of each segment.

The averaging of modified periodograms tends to decrease the variance of the estimate relative
to a single periodogram estimate of the entire data record. Although overlap between
segments tends to introduce redundant information, this effect is diminished by the use of a
nonrectangular window, which reduces the importance or weight given to the end samples of
segments (the samples that overlap).

However, as mentioned above, the combined use of short data records and nonrectangular
windows results in reduced resolution of the estimator. In summary, there is a trade-off
between variance reduction and resolution. One can manipulate the parameters in Welch's
method to obtain improved estimates relative to the periodogram, especially when the SNR is
low.

For a more detailed discussion of Welch's method of PSD estimation, see Kay [2] and Welch [8].

Bias and Normalization in Welch's Method
Welch's method yields a biased estimator of the PSD. The expected value can be found to be

fr2
= 1 . 2
E{P eich]l = FLU J P.r.r':F‘Jl“':f_F‘Jl dp
=z
2

where L, is the length of the data segments and U is the same normalization constant present

in the definition of the modified periodogram. As is the case for all periodograms, Welch's
estimator is asymptotically unbiased. For a fixed length data record, the bias of Welch's
estimate is larger than that of the periodogram because L, < L.

The variance of Welch's estimator is difficult to compute because it depends on both the
window used and the amount of overlap between segments. Basically, the variance is inversely
proportional to the number of segments whose modified periodograms are being averaged.

References

[1] Hayes, M.H. Statistical Digital Signal Processing and Modeling. New York: John Wiley & Sons,
1996.

[2] Kay, S.M. Modern Spectral Estimation. Englewood Cliffs, NJ: Prentice Hall, 1988.
[3] Marple, S.L. Digital Spectral Analysis. Englewood Cliffs, NJ: Prentice Hall, 1987.
[4] Orfanidis, S.J. Introduction to Signal Processing. Upper Saddle River, NJ: Prentice Hall, 1996.

[5] Percival, D.B., and A.T. Walden. Spectral Analysis for Physical Applications: Multitaper and
Conventional Univariate Techniques. Cambridge: Cambridge University Press, 1993.

[6] Proakis, J.G., and D.G. Manolakis. Digital Signal Processing: Principles, Algorithms, and
Applications. Englewood Cliffs, NJ: Prentice Hall, 1996.

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/sigproc_intro.htmI[10/08/2009 16:27:54]

Introduction (LTPDA Toolbox)

[7] Stoica, P., and R. Moses. Introduction to Spectral Analysis. Upper Saddle River, NJ: Prentice
Hall, 1997.

[8] Welch, P.D. " The Use of Fast Fourier Transform for the Estimation of Power Spectra: A
Method Based on Time Averaging Over Short, Modified Periodograms.IEEE Trans. Audio
Electroacoust. Vol. AU-15 (June 1967). Pgs.70-73.

[€]Spectral Estimation Spectral Windows [#]

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/sigproc_intro.htmI[10/08/2009 16:27:54]

Spectral Windows (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Spectral Windows

Spectral windows are an essential part of any spectral analysis. As such, great care has been
taken to implement a complete and accurate set of window functions. The window functions
are implemented as a class specwin. The properties of the class are given in specwin class.

The following pages describe the implementation of spectral windows in the LTPDA framework:

e What are LTPDA spectral windows?
e Creating spectral windows

e Visualising spectral windows
e Using spectral windows

[®]Introduction What are LTPDA spectral windows?[#]

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/specwin.html[10/08/2009 16:28:00]

Spectral Windows (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/specwin.html[10/08/2009 16:28:00]

What are LTPDA spectral windows? (LTPDA Toolbox)

LTPDA Toolbox contents [€]

What are LTPDA spectral windows?

MATLAB already contains a number of window functions suitable for spectral analysis.
However, these functions simply return vectors of window samples; no additional information is
given. It is also desirable to have more information about a window function, for example, its
normalised equivalent noise bandwidth (NENBW), its peak side-lobe level (PSLL), and its
recommended overlap (ROV).

The specwin class implements many window functions as class objects that contain many
descriptive properties. The following table lists the available window functions and some of
their properties:

Window name NENBW PSLL |ROV

[dB] |[%]
Rectangular 1.000 -13.310.0
Welch 1.200 -21.3|29.3
Bartlett 1.333 -26.5|50.0
Hanning 1.500 -31.5|50.0
Hamming 1.363 -42.750.0
Nuttall3 1.944 -46.7 |64.7
Nuttall4 2.310 -60.9170.5
Nuttall3a 1.772 -64.2|61.2
Nuttall3b 1.704 -71.5|59.8
Nuttall4a 2.125 -82.668.0
Nuttall4b 2.021 -93.3166.3
Nuttall4c 1.976 -98.1|65.6
BH92 2.004 -92.066.1
SFT3F 3.168 -31.7|66.7
SFT3M 2.945 -44.2|65.5

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/specwin_description.htmI[10/08 /2009 16:28:05]

What are LTPDA spectral windows? (LTPDA Toolbox)

FTNI 2.966 -44.4165.6
SFT4F 3.797 -44.7|75.0
SFT5F 4.341 -57.3|78.5
SFT4M 3.387 -66.5|72.1
FTHP 3.428 -70.472.3
HFT70 3.413 -70.472.2
FTSRS 3.770 -76.6|75.4
SFT5M 3.885 -89.9|76.0
HFT90D 3.883 -90.2|76.0
HFT95 3.811 -95.0|75.6
HFT116D 4.219 - 78.2
116.8
HFT144D 4.539 - 79.9
114.1
HFT169D 4.835 - 81.2
169.5
HFT196D 5.113 - 82.3
196.2
HFT223D 5.389 - 83.3
223.0
HFT248D 5.651 - 84.1
248.0

In addition to these 'standard' windows, Kaiser windows can be designed to give a chosen PSLL.

[#]Spectral Windows Create spectral windows

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/specwin_description.htmI[10/08 /2009 16:28:05]

Create spectral windows (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Create spectral windows

To create a spectral window object, you call the specwin class constructor. The following code
fragment creates a 100-point Hanning window:

>> w = specwin(“Hanning®, 100)
———————— Hanning ----——————-—-

alpha: 0
psil: 31.5
rov: 50
nenbw: 1.5
w3db: 1.4382
flatness: -1.4236
ws: 50
ws2: 37.5
win: 100

List of available window functions

In the special case of creating a Kaiser window, the additional input parameter, PSLL, must be
supplied. For example, the following code creates a 100-point Kaiser window with -150dB
peak side-lobe level:

>> w = specwin("Kaiser®, 100, 150)
———————— Kaiser -----——-———--—-

alpha: 6.18029
psil: 150
rov: 73.3738
nenbw: 2.52989
w3db: 2.38506
flatness: -0.52279
ws: 28.2558
ws2: 20.1819
win: 100

[€]What are LTPDA spectral windows? Visualising spectral windows [#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/specwin_create.html|[10/08/2009 16:28:11]

Create spectral windows (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/specwin_create.html|[10/08/2009 16:28:11]

Visualising spectral windows (LTPDA Toolbox)

LTPDA Toolbox

contents

Visualising spectral windows

The specwin class has a plot method which will plot the response of the given window function
in the current Figure:

w = specwin(“Kaiser®, 100, 150);

figure
plot(w)

(o B e B e |

Figure 1

File Edit View Insert Tools Desktop Window Help

DS kROe)E 08 =0

Window Kaiser

0.3

0.2

07

alpha = 6,18029
psll =150

row = 73.3738
nenkbw = 2.52983
w3dh = 238506

flatness = -0.52273 |

0.e

0.5

amplitude

0.4

0.3

0.2

01

/

\

B

N\

o

10

20

30

40

50
sample

&0

70

20 20 100

Windows can also be visualised using the Spectral Window Viewer.

Create spectral windows

©OLTP Team

Using spectral windows [#]

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/specwin_plot.htmI[10/08/2009 16:28:17]

Visualising spectral windows (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/specwin_plot.htmI[10/08/2009 16:28:17]

Using spectral windows (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Using spectral windows

Spectral windows are typically used in spectral analysis algorithms. In all LTPDA spectral
analysis functions, spectral windows are specified as parameters in an input parameter list. The
following code fragment shows the use of Itpda_pwelch to estimate an Amplitude Spectral
Density of the time-series captured in the input AO, a_in. The help for Itpda_pwelch reveals that
the required parameter for setting the window function is 'Win'.

w = specwin(“Kaiser®, 100, 150);
pl = plist(*Win", w)
axx = psd(a_in, pl);

In this case, the size of the spectral window (number of samples) may not match the length of
the segments in the spectral estimation. The psd algorithm then recomputes the window using
the input design but for the correct length of window function.

Many of the LTPDA algorithms that expect a spectral window parameter can also work with just
the name of the window being specified. For example, the above code can also be written as

axx = psd(a_in, “Win®, “Kaiser®);

Spectral windows can also be used more directly by first converting them to Analysis Objects.
The following code fragment converts a specwin object to an Analysis Object. This AO is then
multiplied against another time-series AO to window the data.

= ao("datal.txt")

= specwin("Kaiser®, len(a), 150);
a = ao(wW);

in = a.*wa;

Note here that the 1en method of the AO class is used to produce a window function that is of
the same length as the time-series contained in a.

[#] Visualising spectral windows Power spectral density estimates [#]

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/specwin_using.html|[10/08/2009 16:28:23]

Using spectral windows (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/specwin_using.html|[10/08/2009 16:28:23]

Power spectral density estimates (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Power spectral density estimates

Univariate power spectral density is performed by the Welch's averaged, modified periodogram
method. psd estimates the power spectral density of time-series signals, included in the input
aos. Data are windowed prior to the estimation of the spectrum, by multiplying it with a
spectral window object, and can be detrended by polinomial of time in order to reduce the
impact of the border discontinuities. The window length is adjustable to shorter lenghts to
reduce the spectral density uncertainties, and the percentage of subsequent window overlap
can be adjusted as well. The detrending is performed on the individual windows. The user can
choose the quantity being given in output among ASD (amplitude spectral density), PSD (power
spectral density), AS (amplitude spectrum), and PS (power spectrum).

Syntax
bs = psd(al,a2,a3,..., ph)
bs = psd as,plg
bs = as.psd(pl

al, a2, a3, ... are ao(s) containing the input time series to be evaluated. bs includes the output
object(s). The parameter list p1 includes the following parameters:

e *Nfft" - number of samples in each fft [default: length of input data] A string value
containing the variable 'fs' can also be used, e.g., plist('Nfft', '2*fs")

e "win" - the window to be applied to the data to remove the discontinuities at edges of
segments. [default: taken from user prefs] Only the design parameters of the window
object are used. Enter either:

= a specwin window object OR

= a string value containing the window name e.qg., plist('Win', 'Kaiser', 'psll', 200)
e "Olap” - segment percent overlap [default: -1, (taken from window function)]
e "Scale" - scaling of output. Choose from:

= 'ASD' - amplitude spectral density

= 'PSD' - power spectral density [default]

= 'AS' - amplitude spectrum

= 'PS' - power spectrum
e -order” - order of segment detrending

= -1 - no detrending

= 0 - subtract mean [default]

= 1 - subtract linear fit

= N - subtract fit of polynomial, order N

e “Navs® - humber of averages. If set, and if Nfft was set to O or -1, the number of points
for each window will be calculated to match the request. [default: -1, not set]

The length of the window is set by the value of the parameter *Nfft, so that the window is
actually rebuilt using only the key features of the window, i.e. the name and, for Keiser
windows, the PSLL.

As an alternative, the user can input, as a value for the "win- key, a string corresponding to the
name of the window. In the case of Kaiser window, it's necessary to specify the additional
parameter “psll-.

As an alternative to setting the number of points *Nfft" in each window, it's possible to ask for

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/psd.html[10/08/2009 16:28:30]

Power spectral density estimates (LTPDA Toolbox)

a given number of PSD estimates by setting the "Navs* parameter, and the algorithm takes care
of calculating the correct window length, according to the amount of overlap between
subsequent segments.

If the user doesn't specify the value of a given parameter, the default value is used.

Examples

1. Evaluation of the PSD of a time-series represented by a low frequency sinewave signal,
superimposed to white noise. Comparison of the effect of windowing on the estimate of the
white noise level and on resolving the signal.

x1 = ao%pllst waveform','sir_le wave® ,"f",0.1,"A",1, "nsecs",1000, "fs" ,10));
X2 = ao(plist(“waveform®, "noise”, "type”", "“normal ", "nsecs”,1000, "fs* 10))
X = X1 + x2;
y_If = psd(X);
y_hf = psd(x pllst(nfft",1000));
iplot(y_IT, y hf)
3
1@ === I : =
PSD{{sine wavetnoise)) |
5 PSDCCsine wave+nolse)|
1@
1
1@ £ 1
\
1
@
— 18 k =
IN]
= -.
-1
1@ : = =
= = ¥
z |
2 197 L
=
- |
14
-4
10 |
1@ -3 -z -1 8 1
1a 16 16 18 1@
Freguency [Hz]

2. Evaluation of the PSD of a time-series represented by a low frequency sinewave signal,
superimposed to white noise and to a low frequency linear drift. In the example, the same
spectrum is computed with different spectral windows.

X1
X2

ao gpllst waveform','sir_1e wave® ,"f",0.1,"A",1, "nsecs",1000, "fs*,10, yunlts' m));
plist(“waveform®, "noise”, "type®, "normal ", "nsecs”,1000, "fs" ,10, yunlts m*));

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/psd.html[10/08/2009 16:28:30]

Power spectral density estimates (LTPDA Toolbox)

x3 = ao(plist("tsfcn®, "t.~2 + t°,"nsecs”,1000, "fs",10, "yunits®"," m"));
X = x1 + X2 + X3;

y_ 1 = psd(x,plist(“scale”,"ASD", "order",1, "win" ,specwin("BH92")));
y 2 = psd(x,plist(“scale”,*ASD", "order*",2, "win®, "Hamming~));
3 = psd(x,plist(“scale”,"ASD", "order™,2, "win", "Kaiser®, "psll1",200));

¥Elot(y_1, y_2, y_3);

1@8 I I I T T T TTT I I I T T T 11
=A50{{{=ine wavetnoise H+x3)

=A50{{{=ine wavetnoise H+x3)

1@5 = = ASDC(Csine wovetnolse 300
4
__ 10
IN
=
= 10 \
2 0
=
=
2 1p°
=
| et
5 T VW
16 I i
1@ -3 -2 -1 5} 1
16 1E 16 16 16

Freguency [Hz]

[®]Using spectral windows Cross-spectral density estimates [#]

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/psd.html[10/08/2009 16:28:30]

Cross-spectral density estimates (LTPDA Toolbox)

LTPDA Toolbox contents [$]

Cross-spectral density estimates

Multivariate power spectral density is performed by the Welch's averaged, modified
periodogram method. ao/cpsd estimates the cross-spectral density of time-series signals,
included in the input aos. Data are windowed prior to the estimation of the spectra, by
multiplying it with a spectral window object, and can be detrended by polinomial of time in
order to reduce the impact of the border discontinuities. The window length is adjustable to
shorter lenghts to reduce the spectral density uncertainties, and the percentage of subsequent
window overlap can be adjusted as well.

Syntaxis
b = cpsd(al,az2,pl)

al and a2 are the 2 aos containing the input time series to be evaluated; b is the output object.
The parameter list pl includes the following parameters:

e “Nfft" - number of samples in each fft [default: length of input data] A string value
containing the variable 'fs' can also be used, e.g., plist(Nfft', '2*fs")

e "win" - the window to be applied to the data to remove the discontinuities at edges of
segments. [default: taken from user prefs] Only the design parameters of the window
object are used. Enter either:

= a specwin window object OR

= a string value containing the window name e.g., plist('Win', 'Kaiser', 'psll’, 200)
e "Olap” - segment percent overlap [default: -1, (taken from window function)]
e -order” - order of segment detrending

= -1 - no detrending

= 0 - subtract mean [default]

= 1 - subtract linear fit

= N - subtract fit of polynomial, order N

* “Navs® - humber of averages. If set, and if Nfft was set to O or -1, the number of points
for each window will be calculated to match the request. [default: -1, not set]

The length of the window is set by the value of the parameter *Nfft-, so that the window is
actually rebuilt using only the key features of the window, i.e. the name and, for Keiser
windows, the PSLL.

As an alternative, the user can input, as a value for the *win* key, a string corresponding to the
name of the window. In the case of Kaiser window, it's necessary to specify the additional
parameter "psll-.

As an alternative to setting the number of points *Nfft" in each window, it's possible to ask for
a given number of CPSD estimates by setting the "Navs* parameter, and the algorithm takes
care of calculating the correct window length, according to the amount of overlap between
subsequent segments.

If the user doesn't specify the value of a given parameter, the default value is used.

The function makes CPSD estimates between the 2 input aos. The input argument list must

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/cpsd.html[10/08/2009 16:28:37]

Cross-spectral density estimates (LTPDA Toolbox)

contain 2 analysis objects, and the output will contain the CPSD estimate. If passing two
identical objects ai, the output will be equivalent to the output of psd(ai).

Example

Evaluation of the CPSD of two time-series represented by: a low frequency sinewave signal
superimposed to white noise, and a low frequency sinewave signal at the same frequency,
phase shifted and with different amplitude, superimposed to white noise.

nsecs = 1000,)
x = ao(plist(“waveform®, "sine wave®","f",0.1,"A",1, "nsecs” ,nsecs, "fs",10)) + ...

ao(plist(“waveform® , "noise”, "type~, "normal ", "nsecs” ,nsecs, "fs",10));
x.setYunits("m");
y = ao(plist(“waveform®, “sine wave®,"f",0.1,"A",2,"nsecs”,nsecs, "fs",10, "phi*,90)) + ...
4*ao(plist("waveform® , "noise”, "type®, "normal®, "nsecs” ,nsecs, "fs",10));
y.setYunits("V");
z = cpsd(x,y,plist(*nfft*,1000));
iplot(2);
z
1@ I I I I I I I I T T I I I I I I T
= =cpsd{{sine wave+tnoise—>{sine wave+{d*noise)))
' \
T @
§ 16 /
= e 7
= —
& 1@ I
=
4+
-
=
[
S 19
-z -1 @ 1
14 164 14 14
Freqguency [Hz]
2@@ T T T T T T T T 171 T T T T T T 1
=cpsd{{sine wave+tnoise—>{sine wave+{d*noise)))
168 "
‘= --""'"—-—-
=
5]
]
=
[
—=1E8E 1 I
~2e8 -z -1 @ 1
14 164 14 14
Freguency [Hz]
[®] Power spectral density estimates Cross coherence estimates [#]

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/cpsd.html[10/08/2009 16:28:37]

Cross-spectral density estimates (LTPDA Toolbox)

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/cpsd.html[10/08/2009 16:28:37]

Cross coherence estimates (LTPDA Toolbox)

LTPDA Toolbox contents

Cross coherence estimates

Multivariate power spectral density is performed by the Welch's averaged, modified periodogram
method. ao/cohere estimates the magnitude-squadred coherence of time-series signals, included in
the input aos. Data are windowed prior to the estimation of the spectra, by multiplying it with
aspectral window object, and can be detrended by polinomial of time in order to reduce the impact of
the border discontinuities. The window length is adjustable to shorter lenghts to reduce the spectral
density uncertainties, and the percentage of subsequent window overlap can be adjusted as well.

Syntaxis
b = cohere(al,a2,pl)

al and a2 are the 2 aos containing the input time series to be evaluated; b is the output object. The
parameter list pl includes the following parameters:

e “Nfft - number of samples in each fft [default: length of input data] Notice: analyzing a single
segment produces as a result an object full of 1! A string value containing the variable 'fs' can
also be used, e.g., plist(Nfft', '2*fs")

e "win" - the window to be applied to the data to remove the discontinuities at edges of
segments. [default: taken from user prefs] Only the design parameters of the window object are
used. Enter either:

= a specwin window object OR

= a string value containing the window name e.g., plist('Win', 'Kaiser', 'psll’, 200)
e “Olap” - segment percent overlap [default: -1, (taken from window function)]
e -order” - order of segment detrending

= -1 - no detrending

= 0 - subtract mean [default]

= 1 - subtract linear fit

= N - subtract fit of polynomial, order N

e "Navs®" - number of averages. If set, and if Nfft was set to O or -1, the number of points for each
window will be calculated to match the request. [default: -1, not set]

The length of the window is set by the value of the parameter "Nfft-, so that the window is actually
rebuilt using only the key features of the window, i.e. the name and, for Keiser windows, the PSLL.

As an alternative, the user can input, as a value for the "win* key, a string corresponding to the name
of the window. In the case of Kaiser window, it's necessary to specify the additional parameter “psili-.

As an alternative to setting the number of points “Nfft- in each window, it's possible to ask for a
given number of coherence estimates by setting the "Navs™ parameter, and the algorithm takes care
of calculating the correct window length, according to the amount of overlap between subsequent
segments.

If the user doesn't specify the value of a given parameter, the default value is used.

The function makes magnitude-squadred coherence estimates between the 2 input aos. If passing
two identical objects ai or linearly combined signals, the output will be 1 at all frequencies. The same
will happen if analyzing only a single window.

Example

Evaluation of the magnitude-squadred coherence of two time-series represented by: a low frequency

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/coherence.htmI[10/08/2009 16:28:45]

Cross coherence estimates (LTPDA Toolbox)

sinewave signal superimposed to white noise and a linear drift, and a low frequency sinewave signal
at the same frequency, phase shifted and with different amplitude, superimposed to white noise.

nsecs = 5000;

fs = 10;

x = ao(plist(“waveform®,"sine wave","f",0.1, "A",1, "nsecs” ,nsecs, "fs",fs, "yunits","m")) + ...
ao(plist(“waveform® , "noise", "type”, "normal ", "nsecs” ,nsecs, "fs" ,fs, "yunits","m")) + ...
ao(plist("tsfcn®, "t","nsecs”,nsecs, "fs",fs, "yunits”,"m"));)

y = ao(plist(“waveform®,"sine wave","f",0.1, "A",2, "nsecs” ,nsecs, "fs" ,fs, "phi”,90)) + ...
4*ao(plist(“waveform®, "noise”, "type~, "normal”, "nsecs” ,nsecs, "fs" ,fs));

y.setYunits("V");

nfft = 1000;

pl = plist(*win" ,specwin("BH92"), "nfft",nfft, “order®,1l);

Cxx = coheregx,x,pl ;
Qx¥ = cohere(x,y,pl);
iplot(Cxx);
iplot(Cxy);
OO0 Figure 1
File Edit View Insert Tools Desktop Window Help
*» O@gde h A0 9EL- 2 08 O
1@1 I [T 11 I I I I I I T T 1 I I I I I | | I_
mscohere! { {sine wave+noise MHnone)—={{sine wave+nol... f
i)
S 10°
=
g
-1
18 -2 -1 5] 1
14 16 14 14
Frequency [Hz]

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/coherence.htmI[10/08/2009 16:28:45]

Cross coherence estimates (LTPDA Toolbox)

I."\.I I."\.I .

Figure 2

File Edit View Insert Tools Desktop Window Help

s DS M AAOTDEWW- 2 0R a0

]
16

mscoherel { {sine wavetnoise Mnone—=={sine wave+{4*n, .. i

16

10 A ﬂt !

[]
/]

2
16

amplitude

16

16

14 .
14 16
Frequency [Hz]

@
18

16

[€]Cross-spectral density estimates

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/coherence.htmI[10/08/2009 16:28:45]

Transfer function estimates

Transfer function estimates (LTPDA Toolbox)

LTPDA Toolbox contents

Transfer function estimates

Multivariate power spectral density is performed by the Welch's averaged, modified periodogram
method. ao/tfe estimates the transfer function of time-series signals, included in the input aos. Data
are windowed prior to the estimation of the spectra, by multiplying it with a spectral window object,
and can be detrended by polinomial of time in order to reduce the impact of the border
discontinuities. The window length is adjustable to shorter lenghts to reduce the spectral density
uncertainties, and the percentage of subsequent window overlap can be adjusted as well.

Syntaxis
b = tfe(al,a2,pl)

al and a2 are the 2 aos containing the input time series to be evaluated; b is the output object. The
parameter list pl includes the following parameters:

e “Nfft” - number of samples in each fft [default: length of input data] A string value containing
the variable 'fs' can also be used, e.g., plist('Nfft', '2*fs")

e *win" - the window to be applied to the data to remove the discontinuities at edges of
segments. [default: taken from user prefs] Only the design parameters of the window object are
used. Enter either:

= a specwin window object OR

= - a string value containing the window name e.g., plist('Win', 'Kaiser', 'psll*, 200)
e "Olap” - segment percent overlap [default: -1, (taken from window function)]
e -order” - order of segment detrending

= -1 - no detrending

= 0 - subtract mean [default]

= 1 - subtract linear fit

= N - subtract fit of polynomial, order N
e -"variance® - computes transfer function variance.

= 'ves' - compute tf variance

= 'no' - do not compute tf variance [default]

e “Navs" - humber of averages. If set, and if Nfft was set to O or -1, the number of points for each
window will be calculated to match the request. [default: -1, not set]

The length of the window is set by the value of the parameter "Nfft", so that the window is actually
rebuilt using only the key features of the window, i.e. the name and, for Keiser windows, the PSLL.

As an alternative, the user can input, as a value for the “win- key, a string corresponding to the name
of the window. In the case of Kaiser window, it's necessary to specify the additional parameter =psii-.

As an alternative to setting the number of points *Nfft- in each window, it's possible to ask for a
given number of TFE estimates by setting the “Navs* parameter, and the algorithm takes care of
calculating the correct window length, according to the amount of overlap between subsequent
segments.

If the user doesn't specify the value of a given parameter, the default value is used.

The function makes transfer functions estimates between the 2 input aos, and the output will contain
the transfer function estimate from the first ao to the second.

Example

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/transfer.html[10/08/2009 16:28:55]

Transfer function estimates (LTPDA Toolbox)

Evaluation of the transfer function between two time-series represented by: a low frequency sinewave

signal superimposed to white noise, and a low frequency sinewave signal at the same frequency,
phase shifted and with different amplitude, superimposed to white noise.

nsecs = 1000;
fs = 10;
X = ao pllst “"waveform® , "sine wave®,"f",0.1, "A",1, "nsecs” ,nsecs, "fs",fs)) + ...
o(plist(waveform 'noise','type','normal','nsecs ,nsecs, "fs" ,fs)),
X. setYunlts
y = ao pllstg waveform S|ne wave® ,"f",0.1, "A",2, "nsecs” ,nsecs, "fs" ,fs, phl ,90)) + ...
i

0.1*ao(p st(waveform , noise", "type", "normal”, "nsecs” ,nsecs, “fs”
y.setYunits(“rad
nfft = 1000;
sl = 200;
xy = tfe x,y,plist "win®, "Kaiser", psll',psll "nfft" ,nfft));
Tyx = tfe(y,x,plist("win","Kaiser”, "psll”,psll, "nfft” nfft ;
Txx = tfe(Xx,x,plist("win~ 'Kalser , pshl®,psll, "nfft" nfft ;
¥ = tfe(y,y,plist("win* ,'Kalser , psll',psll, nfft* nfft ;
iplot(Txy);
iplot(Tyx
iplot%Txx%
iplot(Tyy);
O00 Figure 2
File Edit View Insert Tools Desktop Window Help
*» O@gde h A0 9EL- 2 08 O
z
1@ T T I I I I I I T T T I I I I T T T
. =1ifei{sine wavetnoise —=={sine wave+{d.1*noise)
—
1
E @
= 10 —
E /
2
o - Ly WLV,
= 19 L
+
B
o
[
=
[} -
16 -2 -1 5] 1
14 1E 16 16
Frequency [Hz]
2@@ T T I I I I I I T T T I I I I T T T T
—-hh-""""\ =—1tfel{zine wave+tnolze—=={sine wave+{d, 1*noise)))
e r
E /
= M
: @ d \
[]]
=
Ly
[
~166 .r '
200 -2 -1] 1
16 14 16 16
Frequency [Hz]

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/transfer.html[10/08/2009 16:28:55]

Transfer function estimates (LTPDA Toolbox)

oYY Figure 3
File Edit View Insert Tools Desktop Window Help
*» Ogde h AT 9EW- 2 08 O
1
10 —_— —r
. tfe({sine wave+(d@.1*noise))—=(sine wavetnoise)) [
— — ra) 1
ERTY N AT,
'E‘ \‘ rd | | :
) -1
= 19
o
o
E
1a = = ;
14 16 14 14
Frequency [Hz]
2@@ T I I I I I I T T 1 I I I I I 1T 1
=1ifei{sine wave+t{d 1*noise)) —=={sine wavetnoise)
100 HIN
= }1 f
!
o
5]
\ 2
& N
~1e /" N J "
|| ']
i - = ;
14 16 14 14
Frequency [Hz]

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/transfer.html[10/08/2009 16:28:55]

Transfer function estimates (LTPDA Toolbox)

500 Figure 4
File Edit View Insert Tools Desktop Window Help
*» gde h A0 9EL- 2 08 a3
| | | | 1 1 1 11 | | | | 1 1 1 1
tfel{sine wavernoised—={sine wavet+tnoise’
“,"_| @8z
E, 1a
B
t a.a1
4‘% 1@ \
=
=
[
=]
16 1 .
14 16 14 14
Frequency [Hz]
@.@5 ""'l-u.‘ I I I I I I T T 1 I I I I I 1T 1
/ \ =—1ife({sine wavetnoise)—={sine wave+tnoise)’
5]
- /
ﬁ 3,85 7
LB /
a4l /
=
[
@.15
-3.25 = ;
14 16 14 14
Frequency [Hz]

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/transfer.html[10/08/2009 16:28:55]

Transfer function estimates (LTPDA Toolbox)

OO0 Figure 5
File Edit View Insert Tools Desktop Window Help
*» gde h A0 9EL- 2 08 a3
B .84
10 s> ==
- tfel {sine wave+(d,1*noise) i —={sine wave+{d.1*noise. ..
o
2
'-g 1@8.82
L)
)
=
h \
—! 5]
o g
[
-2 -1 5] 1
14 14 16 16
Frequency [Hz]
1.5 I [T 11 I I I I I I T T 1 I I I I I 1T 1
=—1ifei{sine wave+(B, 1*noise’—={sine wave+t{d.1*noise. ..
1
‘=
!
o
3.5
\
= \
5
_@5 -2 -1 5] 1
14 1E 16 16
Frequency [Hz]
[€]Cross coherence estimates Log-scale power spectral density estimates [#]
OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/transfer.html[10/08/2009 16:28:55]

Log-scale power spectral density estimates (LTPDA Toolbox)

LTPDA Toolbox contents

Log-scale power spectral density estimates

Univariate power spectral density on a logarithmic scale can be performed by the LPSD algorithm
(Measurement 39 (2006) 120-129), which is an application of Welch's averaged, modified
periodogram method. Spectral density estimates are not evaluated at freqencies which are linear
multiples of the minimum frequency resolution 1/7 where T is the window lenght, but on a
logarithmic scale. The algorithm takes care of calculating the frequencies at which to evaluate the
spectral estimate, aiming at minimizing the uncertainty in the estimate itself, and to recalculate a
suitable window length for each frequency bin.

ao/lIpsd estimates the power spectral density of time-series signals, included in the input aos. Data
are windowed prior to the estimation of the spectrum, by multiplying it with aspectral window object,
and can be detrended by polinomial of time in order to reduce the impact of the border
discontinuities. Detrending is performed on each individual window. The user can choose the quantity
being given in output among ASD (amplitude spectral density), PSD (power spectral density), AS
(amplitude spectrum), and PS (power spectrum).

Syntaxis
bs = Ipsd(al,a2,a3, ..., ph)
bs = Ipsdgas,plg
bs = as.lIpsd(pl

al, a2, a3, ... are ao(s) containing the input time series to be evaluated. bs includes the output
object(s). The parameter list pI includes the following parameters:

e “Kdes" - desired number of averages [default: 100]

e -Jdes” - number of spectral frequencies to compute [default: 1000]

e “Lmin® - minimum segment length [default: 0]

e "win" - the window to be applied to the data to remove the discontinuities at edges of
segments. [default: taken from user prefs] Only the design parameters of the window object are
used. Enter either:

= a specwin window object OR

= a string value containing the window name e.g., plist('Win', 'Kaiser', 'psll', 200)
e “Olap" - segment percent overlap [default: -1, (taken from window function)]
e -~scale” - scaling of output. Choose from:

= 'ASD' - amplitude spectral density

= 'PSD' - power spectral density [default]

= 'AS' - amplitude spectrum

= 'PS' - power spectrum
e “order” - order of segment detrending

= -1 - no detrending

= 0 - subtract mean [default]

= 1 - subtract linear fit

= N - subtract fit of polynomial, order N

The length of the window is set by the value of the parameter “Nfft-, so that the window is actually
rebuilt using only the key features of the window, i.e. the name and, for Keiser windows, the PSLL.

As an alternative, the user can input, as a value for the “win* key, a string corresponding to the name
of the window. In the case of Kaiser window, it's necessary to specify the additional parameter “psii-.

If the user doesn't specify the value of a given parameter, the default value is used.

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/I_psd.html[10/08/2009 16:29:03]

http://www.sciencedirect.com/science/journal/02632241

Log-scale power spectral density estimates (LTPDA Toolbox)

Examples

1. Evaluation of the ASD of a time-series represented by a low frequency sinewave signal,
superimposed to white noise. Comparison of the effect of using standard Pwelch and LPSD on the
estimate of the white noise level and on resolving the signal.

x1 = ao(plist(waveform”,"sine wave®,"f",0.1,"A",1,"nsecs”,1000,"fs",10, "yunits","rad"));
X2 = 1 pllzt "waveform® , "noise”, "type®, "normal”, "nsecs”,1000, "fs" ,10, "yunits”, "rad"));

X = x1 + x

pi = plist(” scale','ASD','order',—l,'win','Kaiser','psll',ZOO);

y =]

?sdgx

¥p 1 ot(yl y2

P T

Figure 1

File Edit View Insert Tools Desktop Window Help

s Ndde M ARAODEWW- 2 0R a @

10 I T I I I I | N - -
ASDi((sine wave+hoise)f
1ASD(sine wave+noisael

10’

IS] \' I]
IN
L .
=) 1
o
3 - 1IN
g 10-1 = =
E— _
o I |
, |
10]
2
10
10° 10° 10" 10 10"
Frequency [Hz
(€] Transfer function estimates Log-scale cross-spectral density estimates [#]
©LTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/I_psd.html[10/08/2009 16:29:03]

Log-scale cross-spectral density estimates (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Log-scale cross-spectral density
estimates

Multivariate power spectral density on a logarithmic scale can be performed by the LPSD
algorithm (Measurement 39 (2006) 120-129), which is an application of Welch's averaged,
modified periodogram method. Cross-spectral density estimates are not evaluated at
fregencies which are linear multiples of the minimum frequency resolution 1/7 where T is the
window lenght, but on a logarithmic scale. The algorithm takes care of calculating the
frequencies at which to evaluate the spectral estimate, aiming at minimizing the uncertainty in
the estimate itself, and to recalculate a suitable window length for each frequency bin.

ao/lcpsd estimates the cross-spectral density of time-series signals, included in the input aos.
Data are windowed prior to the estimation of the spectra, by multiplying it with a spectral
window object, and can be detrended by polinomial of time in order to reduce the impact of
the border discontinuities. Detrending is performed on each individual window.

Syntaxis
b = Icpsd(al,az,pl)

al and a2 are the 2 aos containing the input time series to be evaluated; b is the output object.
The parameter list pl includes the following parameters:

e “Kdes" - desired number of averages [default: 100]

e -Jdes” - number of spectral frequencies to compute [default: 1000]

e "Lmin" - minimum segment length [default: 0]

e "win" - the window to be applied to the data to remove the discontinuities at edges of
segments. [default: taken from user prefs] Only the design parameters of the window
object are used. Enter either:

= a specwin window object OR

= a string value containing the window name e.g., plist('Win', 'Kaiser', 'psll', 200)
e "Olap” - segment percent overlap [default: -1, (taken from window function)]
e -order” - order of segment detrending

= -1 - no detrending

= 0 - subtract mean [default]

= 1 - subtract linear fit

= N - subtract fit of polynomial, order N

The length of the window is set by the value of the parameter “Nfft, so that the window is
actually rebuilt using only the key features of the window, i.e. the name and, for Keiser
windows, the PSLL.

As an alternative, the user can input, as a value for the "win- key, a string corresponding to the
name of the window. In the case of Kaiser window, it's necessary to specify the additional
parameter “psil-.

If the user doesn't specify the value of a given parameter, the default value is used.

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/l_cpsd.htmI[10/08/2009 16:29:09]

http://www.sciencedirect.com/science/journal/02632241

Log-scale cross-spectral density estimates (LTPDA Toolbox)

The function makes log-scale CPSD estimates between the 2 input aos. The input argument list
must contain 2 analysis objects, and the output will contain the LCPSD estimate. If passing two
identical objects ai, the output will be equivalent to the output of Ipsd(ai).

Example

Evaluation of the log-scale CPSD of two time-series represented by: a low frequency sinewave
signal superimposed to white noise, and a low frequency sinewave signal at the same
frequency, phase shifted and with different amplitude, superimposed to white noise.

nsecs = 1000;

fs = 10;

x = ao(plist(“waveform®,“sine wave®,"f",0.1,"A",1,"nsecs”,nsecs, "fs",fs)) + ...
ao(plist(“waveform®, "noise”, "type”, "normal ", "nsecs” ,nsecs, "fs" ,fs));

-setYunits("m");

= ao(plist("waveform®,"sine wave®","f",0.1, "A",2, "nsecs” ,nsecs, "fs" ,fs, "phi®,90)) + ...
4*ao(plist(“waveform®,“"noise”, "type”, "normal ", "nsecs” ,nsecs, "fs" ,fs));

.setYunits("V7);

= lcpsd(x,y,plist("nfft",1000));

plot(2);

=N <X

H
]
1

lepsd{{sine wavetnoise)—={sine wavet{4*noised)’

I\
#"--..___..--"""---...\/f"\ \,J

[v1[m][Hz"1]
=

amplitude

-3 -2 -1 5] 1

14 14 16 18 14
Frequency [Hz]

2@@ I I I L T T TTT I I I T T T 111 I I I I T T 11
kﬁ\\ =—1lcpsd{{sine wavetnoize)—={sine wave+r(Hnoised))

@ I, \
~100 ’/(& X
_2@@ -3 -2 -1 5] 1
16 16 163 16 1E

Frequency [Hz]

Fhase [deg]

[#]Log-scale power spectral density estimates Log-scale cross coherence density estimates [#]

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/l_cpsd.htmI[10/08/2009 16:29:09]

Log-scale cross-spectral density estimates (LTPDA Toolbox)

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/l_cpsd.htmI[10/08/2009 16:29:09]

Log-scale cross coherence density estimates (LTPDA Toolbox)

LTPDA Toolbox contents

Log-scale cross coherence density estimates

Multivariate power spectral density on a logarithmic scale can be performed by the LPSD algorithm
(Measurement 39 (2006) 120-129), which is an application of Welch's averaged, modified
periodogram method. The magnitude-squadred coherence of time-series signals, included in the
input aos are not evaluated at freqencies which are linear multiples of the minimum frequency
resolution 1/T7 where T is the window lenght, but on a logarithmic scale. The algorithm takes care of
calculating the frequencies at which to evaluate the spectral estimate, aiming at minimizing the
uncertainty in the estimate itself, and to recalculate a suitable window length for each frequency bin.

ao/lcohere estimates the coherence of time-series signals, included in the input AOs. Data are
windowed prior to the estimation of the spectra, by multiplying it with aspectral window object, and
can be detrended by polinomial of time in order to reduce the impact of the border discontinuities.
Detrending is performed on each individual window.

Syntaxis
b = lcohere(al,a2,pl)

al and a2 are the 2 aos containing the input time series to be evaluated; b is the output object. The
parameter list p1 includes the following parameters:

» "Kdes" - desired number of averages [default: 100]

e -Jdes” - humber of spectral frequencies to compute [default: 1000]

e “Lmin® - minimum segment length [default: 0]

e "win" - the window to be applied to the data to remove the discontinuities at edges of
segments. [default: taken from user prefs] Only the design parameters of the window object are
used. Enter either:

= a specwin window object OR

= a string value containing the window name e.g., plist(‘'Win', 'Kaiser', 'psll’, 200)
e "Olap™ - segment percent overlap [default: -1, (taken from window function)]
e -Order” - order of segment detrending

= -1 - no detrending

= 0 - subtract mean [default]

= 1 - subtract linear fit

= N - subtract fit of polynomial, order N
e "variance" - computes transfer function variance.

= 'ves' - compute tf variance

= 'no' - do not compute tf variance [default]

The length of the window is set by the value of the parameter *Nfft", so that the window is actually
rebuilt using only the key features of the window, i.e. the name and, for Keiser windows, the PSLL.

As an alternative, the user can input, as a value for the “win* key, a string corresponding to the name
of the window. In the case of Kaiser window, it's necessary to specify the additional parameter “psii-.

If the user doesn't specify the value of a given parameter, the default value is used.

The function makes magnitude-squadred coherence estimates between the 2 input aos, on a
logaritmic frequency scale. If passing two identical objects ai or linearly combined signals, the output
will be 1 at all frequencies.

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/l_coherence.htmI[10/08/2009 16:29:17]

http://www.sciencedirect.com/science/journal/02632241

Log-scale cross coherence density estimates (LTPDA Toolbox)
Example

Evaluation of the coherence of two time-series represented by: a low frequency sinewave signal
superimposed to white noise, and a low frequency sinewave signal at the same frequency, phase
shifted and with different amplitude, superimposed to white noise.

nsecs = 1000;
fs = 10
pllst “waveform® , "sine Wave','f',O.l,'A',l,'nsecs ,hsecs, "fs",fs)) + ...
o(plist waveform , noise", "type", "normal”, "nsecs” ,nsecs, "fs" fs))
X. setYunlts())
y = ao(plist(” waveform® "sine_wave® ,"f",0.1, "A",2, "nsecs” ,nsecs, "fs" ,fs, "phi” ,90)) + ...
4*ao(plist(” waveform® , hoise", "type”, "normal”, "nsecs” ,nsecs, "fs" ,fs));
y.setYunits("V");
Cxx = lcohere(x,x,plist("win","Kaiser™, "psll1”,200));
= écohere X,y,plist("win®,"Kaiser®, "psll1”,200
XX
|plot Cxy);

P T

Figure 1

File Edit View Insert Tools Desktop Window Help

» Ndde M ARAODEWW- 2 0OR a @

z}
14 ‘ -
\\ 11T %
\\ lcohere! {sine wavetnoised—={sine wave+{d*noise’) F
N
| WA
10" N A
) 1)
I | 1 T
V1
: (ST ERIE ;i :
— 9L
y i\
-0--é 1@ ¥ } H 1
- I |
= |
g
19
|
16 £
_ - -1 5}
16 16 1é 16

Frequency [Hz]

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/l_coherence.htmI[10/08/2009 16:29:17]

Log-scale cross coherence density estimates (LTPDA Toolbox)

OO0 Figure 2
File Edit View Insert Tools Desktop Window Help
» Ddde b AT E- 2 0@ a>d
| I N I I B | | | I I I | | | 11 1111
ot 1 lcoherae({sine wove+noise == sine wavetnoisel’
Ze—11
2e—11
9.99992=—1[2
e
E 10°
=
= —9.,99995=—1(2
=1
—2e-11
—3e=—11
—4e-11
-3 -2 -1 5] 1
16 16 16 16 16
Frequency [Hz]
[€]Log-scale cross-spectral density estimates Log-scale transfer function estimates [#]
©LTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/l_coherence.htmI[10/08/2009 16:29:17]

Log-scale transfer function estimates (LTPDA Toolbox)

LTPDA Toolbox contents

Log-scale transfer function estimates

Multivariate power spectral density on a logarithmic scale can be performed by the LPSD algorithm
(Measurement 39 (2006) 120-129), which is an application of Welch's averaged, modified
periodogram method. The transfer function estimates are not evaluated at freqencies which are linear
multiples of the minimum frequency resolution 1/7, where T is the window lenght, but on a
logarithmic scale. The algorithm takes care of calculating the frequencies at which to evaluate the
spectral estimate, aiming at minimizing the uncertainty in the estimate itself, and to recalculate a
suitable window length for each frequency bin.

ao/lItfe estimates the transfer function of time-series signals, included in the input aos. Data are
windowed prior to the estimation of the spectra, by multiplying it with a spectral window object, and
can be detrended by polinomial of time in order to reduce the impact of the border discontinuities.
Detrending is performed on each individual window.

Syntaxis
b = Itfe(al,a2,pl)

al and a2 are the 2 aos containing the input time series to be evaluated; b is the output object. The
parameter list p1 includes the following parameters:

» "Kdes" - desired number of averages [default: 100]

e -Jdes” - humber of spectral frequencies to compute [default: 1000]

e “Lmin® - minimum segment length [default: 0]

e "win" - the window to be applied to the data to remove the discontinuities at edges of
segments. [default: taken from user prefs] Only the design parameters of the window object are
used. Enter either:

= a specwin window object OR

= a string value containing the window name e.g., plist(‘'Win', 'Kaiser', 'psll’, 200)
e "Olap™ - segment percent overlap [default: -1, (taken from window function)]
e -Order” - order of segment detrending

= -1 - no detrending

= 0 - subtract mean [default]

= 1 - subtract linear fit

= N - subtract fit of polynomial, order N
e "variance" - computes transfer function variance.

= 'ves' - compute tf variance

= 'no' - do not compute tf variance [default]

The length of the window is set by the value of the parameter *Nfft", so that the window is actually
rebuilt using only the key features of the window, i.e. the name and, for Keiser windows, the PSLL.

As an alternative, the user can input, as a value for the “win* key, a string corresponding to the name
of the window. In the case of Kaiser window, it's necessary to specify the additional parameter “psii-.

If the user doesn't specify the value of a given parameter, the default value is used.

The function makes logaritmic frequencyscale transfer functions estimates between the 2 input aos,
and the output will contain the transfer function estimate from the first ao to the second.

Example

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/I_transfer.html[10/08/2009 16:29:25]

http://www.sciencedirect.com/science/journal/02632241

Log-scale transfer function estimates (LTPDA Toolbox)

Evaluation of the transfer function between two time-series represented by: a low frequency sinewave
signal superimposed to white noise, and a low frequency sinewave signal at the same frequency,
phase shifted and with different amplitude, superimposed to white noise.

nsecs = 1000;

fs = 10;

x = ao(plist(“waveform®,"sine wave","f",0.1,"A",1, "nsecs” ,nsecs, "fs”,fs)) + ...
ao(plist(“waveform® ,"noise”, "type”, “normal ", "nsecs” ,nsecs, "fs" ,fs));

x.setYunits("m"); N)

y = ao(plist("waveform®,“sine wave","f",0.1, "A",2, "nsecs” ,nsecs, "fs" ,fs, "phi~,90)) + ...
4*ao(plist(“waveform®, "noise”, "type~, "normal”, "nsecs” ,nsecs, "fs" ,fs));

y.setYunits("VT);

nfft = 1000;

Txy = Itfe(x,y,plist(win" ,specwin(Kaiser”,1,200), "nfft" ,nfft));

Tyx = Itfe(y,x,plist("win" ,specwin(“Kaiser®,1,200), "nfft" ,nfft));

iplot(Txy);

iplot(Tyx);

P B

Figure 1

File Edit View Insert Tools Desktop Window Help

» DA b A9 E- 2 0B aOd

1@2 I T T T T TTT I I T T T TT1T I I I T T TT171
=1tfe{{zine wavetnoise == sine wavet{d*noisedd)
"_I|E @ i R - _‘
Plar i %] I ~ N Ly
= 1T A MY A okl
L
n -2
E 14
=
g
1@ -3 -2 -1 5] 1
14 16 14 14 14
Frequency [Hz]
2@@ I I I T T T 171 I I I I T T T 171 I I I L T T 171

=1tfe!{sine wavetnoiser—=={sine wave+r{d*noiseds’

/ M \ /

~166 / |
YTy

-200 = » a 1
16 16 16 16 16

Frequency [Hz]

Phase [deg]
e
[,
1
Fi

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/I_transfer.html[10/08/2009 16:29:25]

Log-scale transfer function estimates (LTPDA Toolbox)

500 Figure 2
File Edit View Insert Tools Desktop Window Help
» DAL h RLODEHL- 2 0@ 8O
z}
1@ I T T T T 1T I I T T T T 1T I I T T T 171
'"'""""'---—._.__,_‘_ = 1ltfe{{sine wovet{d*noise))—={sine wave+noise)
4 T | e f
.a ~ AT AL
B
L
T
=
=
=
=
]
1'2' - - -1 5] 1
14 16 1a 14 14
Frequency [Hz]
2@@ I T T T T 1T I I T T T T 1T I I T T T 171
=—1tfe{{sine wave+{d*noise == sine wavetnoise)
[1 LE N
16
ERE AN
& N et \\
s \
=166 J\\; — ‘Il
200 - » 2 1
14 16 1a 14 14
Frequency [Hz]

[€]Log-scale cross coherence density estimates

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/I_transfer.html[10/08/2009 16:29:25]

Fitting Algorithms [#]

Fitting Algorithms (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Fitting Algorithms

The following sections describe special tools for data fitting implemented in the LTPDA
toolbox.

e Polynomial Fitting
e Time Domain Fit
e /-Domain Fit

e S-Domain Fit

[®]Log-scale transfer function estimates Polynomial Fitting

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/sigproc_fit.htmI[10/08/2009 16:29:31]

Fitting Algorithms (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/sigproc_fit.htmI[10/08/2009 16:29:31]

Polynomial Fitting (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Polynomial Fitting

polyfit.m overloads the polyfit() function of MATLAB for Analysis Objects.
The script calls the following MATLAB functions:

e polyfit.m
e polyval.m
Usage

% CALL: b = polyfit(a, pl)
%
% Parameters: "N* - degree of polynomial to fit
% "coeffs™ - gpptional) coefficients)
% ormed e.g. by [p,s] = polyfit(x,y,N);

The MATLAB function polyfit.m finds the coefficients of the polynomial p(x) of degree N that
fits the vector 'x' to the vector 'y', in a least squares sense.

After this in the script polyfit.m the function polyval.m is called, which evaluates the
polynomial of order 'N' according to these coefficients.

Using the output of polyval.m the fitted data series is created and outputted as analysis object.

[#]Fitting Algorithms Time domain Fit[#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/sigproc_polyfit.html[10/08/2009 16:29:36]

matlab:doc('ao/polyfit')
matlab:doc('ao/polyfit')

Polynomial Fitting (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/sigproc_polyfit.html[10/08/2009 16:29:36]

Time domain Fit (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Time domain Fit

ltpda_timedomainfit.m uses the MATLAB function Iscov.m to fit a set of time-series AOs to a
target time-series AO. It gives back a set of fitting coefficients.

One can now subtract the fitted time series from the original one - the target- and produce a
new time series by calling Itpda_lincom.m with the calculated coefficients. This function does a
linear combination of the inputted coefficients and analysis objects and subtracts the result
from the target analysis object, which has to be the first input parameter.

An example:

coeffsAO = Itpda_timedomainfit(target, tsl, ts2, ts3, ts4);
%% Make linear combination

x12ns = lItpda_lincom(target, tsl, ts2, ts3, ts4, coeffsA0);

x12ns represents the noise subtracted target analysis object. With noise here the fitted time
series is meant. That is the linear combination of the coefficients coeffsa0 and the time series
objects ts1 to ts4.

The number of time or frequency series analysis objects is variable. The first is always taken as
target object.

[#] Polynomial Fitting Z-Domain Fit [#]

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/sigproc_timedomainfit.htmI[10/08/2009 16:29:41]

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/m/sigproc/time_domain/ltpda_timedomainfit.html
http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/m/math/ltpda_lincom.html

Time domain Fit (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/sigproc_timedomainfit.htmI[10/08/2009 16:29:41]

Z-Domain Fit (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Z-Domain Fit

System identification in z-domain is performed with the function ao/zDomainFit. It is based on a
modeified version of the vector fitting algorithm that was chenged to fit in z-domain. Details
on the agorithm can be found in [1 - 3].

Inputs
Outputs
Parameters

Algorithm
References

Call

mod = zDomainFit(a, pl)

mod, resp] = zDomainFit(a, pl)

mod, resp, resids] = zDomainFit(a, pl)

mod, resp, resids, rmse] = zDomainFit(a, pl)

Inputs

e a - input AOs to fit to. If you provide more than one AO as input, they will be fitted
together with a common set of poles. Only frequency domain (fsdata) data can be fitted.
Each non fsdata object will be ignored. Input objects must have the same number of
elements.

* pl - parameter list. See the list of function parameeters below.

Outputs

e mod - model, a bank of parallel miir filters for each input AO.

* resp - model frequency response.

e resids - analysis object containing the fit residuals.

* rmse - analysis object containing the root mean squared error progression during the

fitting loop.

Parameters

Key Value Description

'FS' Sampling frequency. If it is left empty, the
sampling frequency is searched in the input AOs
or it is calculated as 2 times the maximum
frequency reported in AOs x values. [Default []]

'AutoSearch’ ‘on’ Parform a full automatic search for the transfer
function order. The fitting procedure stops when
stop conditions defined by 'ResLogDiff" and
'RMSE' are satisfied. [Default]

'AutoSearch’ 'off' Perform a fitting loop as long as the number of

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/zdomainfit.htmI[10/08/2009 16:29:47]

Z-Domain Fit (LTPDA Toolbox)

'StartPoles'

'StartPolesOpt'

'StartPolesOpt'

'StartPolesOpt’

'maxiter

'minorder’
'maxorder’
'weights'

'weightparam'

'‘weightparam’
'weightparam'

'ResLogDiff

'ResFlat’

'RMSE'

'ForceStability’
'ForceStability’

'Plot’

[l

'real'

lcll

ICZI

[l

'ones'

'abs

'sqrt’

on
‘off’

on

iteration reach 'maxiter'. The order of the fitting
function is that specified in 'minorder".

A vector of starting poles. Providing a fixed set
of starting poles fixes the function order. If it is
left empty, the starting poles are internally
assigned. [Default []].

Start with linearly spaced real poles.

Complex poles distributed inside the unitary
circle of the complex plane. [Default]

Complex poles distributed inside the unitary
circle of the complex plane.

Maximum number of allowed iteration. [Deafult
50]

Minimum model function order. [Default 2]
Maximum model function order. [Default 20]
A vector with the desired weights. [Default []]

Assign equal weights to each element of the
dataset.

Assign weights as 1./abs(y). [Default]
Assign weights as 1./sqrt(abs(y)).

Check if the log difference between data and
residuals is larger than the value indicated.
Leave it empty ([]) if you want to use the
residuals spectral flatness criterion for checking
fit goodness. [Default 2]

Check if the spectral flatness coefficient for the
rersiduals is larger than the value assigned. Only
values sp such that o < sp < 1 are allowed. If
'ResLogDiff' is not empty this parameter is
ignored. [Default 0.5]

Check that the variation of root mean squared
error is lower than 10~r(-1*value). [Default 8]

Force fitted poles to be stable
Do not force fitted poles to be stable. [Default]

Plot fit result.

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/zdomainfit.htmI[10/08/2009 16:29:47]

Z-Domain Fit (LTPDA Toolbox)

'Plot’ 'off’ Do not plot fit result. [Default]

'CheckProgress' 'on' Disply the status of the fit iteration.

'CheckProgress' 'off" Do not disply the status of the fit iteration.
[Default]

Algorithm

The function performs a fitting loop to automatically identify model order and parameters in z-
domain. Output is a z-domain model expanded in partial fractions (a parallel bank of miir
objects):

il I
1 +___+ H

F =
I:z) l—plz_1 1-p,z

-1

Identification loop stops when the stop condition is reached. Stop criteria are based on two
different approachs:

1. Log residuals difference and root mean squared error
o Log Residuals difference Check if the minimum of the logarithmic difference between
data and residuals is larger than a specified value. ie. if the conditioning value is 2,
the function ensures that the difference between data and residuals is at lest two
order of magnitude lower than data itsleves.
o Root Mean Squared Error Check that the variation of the root mean squared error is
lower than 10~r(-1*value).
2. Residuals spectral flatness and root mean squared error
o Residuals Spectral Flatness In case of a fit on noisy data, the residuals from a good
fit are expected to be as much as possible similar to a white noise. This property can
be used to test the accuracy of a fit procedure. In particular it can be tested that the
spectral flatness coefficient of the residuals is larger than a certain giantity sf such
that o < sf < 1.
o Root Mean Squared Error Check that the variation of the root mean squared error is
lower than 10~r(-1*value).

Fitting loop stops when the two stopping conditions are satisfied, in both cases.

The function can also perform a single loop without taking care of the stop conditions. This
happens when 'AutoSearch' parameter is set to 'off".

References

1. B. Gustavsen and A. Semlyen, "Rational approximation of frequency domain responses by
Vector Fitting", IEEE Trans. Power Delivery vol. 14, no. 3, pp. 1052-1061, July 1999.

2. B. Gustavsen, "Improving the Pole Relocating Properties of Vector Fitting", IEEE Trans.
Power Delivery vol. 21, no. 3, pp. 1587-1592, July 2006.

3. Y. S. Mekonnen and J. E. Schutt-Aine, "Fast broadband macromodeling technique of
sampled time/frequency data using z-domain vector-fitting method", Electronic
Components and Technology Conference, 2008. ECTC 2008. 58th 27-30 May 2008 pp.
1231 - 1235.

[4] Time domain Fit S—-Domain Fit[#]

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/zdomainfit.htmI[10/08/2009 16:29:47]

Z-Domain Fit (LTPDA Toolbox)

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/zdomainfit.htmI[10/08/2009 16:29:47]

S-Domain Fit (LTPDA Toolbox)

LTPDA Toolbox contents [€]

S-Domain Fit

System identification in s—domain is performed with the function ao/sbomainFit. It is based on a
modeified version of the vector fitting algorithm. Details on the agorithm can be found in [1 -

21.
e Call
e |nputs
e Qutputs
e Parameters
e Algorithm
» References
Call
mod = sDomainFit(a, pl)
[mod, resp] = sDomainFit(a, pl)
mod, resp, resids] = sDomainFit(a, pl)
mod, resp, resids, rmse] = sDomainFit(a, pl)
Inputs
e a - input AOs to fit to. If you provide more than one AO as input, they will be fitted
together with a common set of poles. Only frequency domain (fsdata) data can be fitted.
Each non fsdata object will be ignored. Input objects must have the same number of
elements.
* pl - parameter list. See the list of function parameeters below.
Outputs
e mod - model, a parfrac object for each input AO.
* resp - model frequency response.
e resids - analysis object containing the fit residuals.
* rmse - analysis object containing the root mean squared error progression during the
fitting loop.
Parameters
Key Value Description
'AutoSearch’ 'on' Parform a full automatic search for the transfer
function order. The fitting procedure stops when
stop conditions defined by 'ResLogDiff" and
'RMSE' are satisfied. [Default]
'AutoSearch’ 'off" Perform a fitting loop as long as the number of
iteration reach 'maxiter'. The order of the fitting
function is that specified in 'minorder".
'StartPoles' (] A vector of starting poles. Providing a fixed set

of starting poles fixes the function order. If it is

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/sdomainfit.html[10/08/2009 16:29:53]

S-Domain Fit (LTPDA Toolbox)

'StartPolesOpt' 'real’
'StartPolesOpt' ‘clog'
'StartPolesOpt' ‘clin’

'maxiter’

'minorder’
'maxorder’
'‘weights' [

'‘weightparam' ‘'ones'

'weightparam' ‘abs
'weightparam' ‘sqrt’

'ResLogDiff

'ResFlat'

'RMSE'

'ForceStability' 'on

'ForceStability' 'off'

'direct term' ‘on'
'direct term' 'off'
'Plot’ ‘on'
'Plot’ 'off'

'CheckProgress' 'on'

left empty, the starting poles are internally
assigned. [Default []].

Start with linearly spaced real poles.
Start with log-spaced complex poles [Default].
Start with linearly spaced complex poles.

Maximum number of allowed iteration. [Deafult
50]

Minimum model function order. [Default 2]
Maximum model function order. [Default 20]
A vector with the desired weights. [Default []]

Assign equal weights to each element of the
dataset.

Assign weights as 1./abs(y). [Default]

Assign weights as 1./sqrt(abs(y)).

Check if the log difference between data and
residuals is larger than the value indicated.
Leave it empty ([]) if you want to use the
residuals spectral flatness criterion for checking
fit goodness. [Default 2]

Check if the spectral flatness coefficient for the
rersiduals is larger than the value assigned. Only
values sp such that o < sp < 1 are allowed. If
'ResLogDiff' is not empty this parameter is
ignored. [Default 0.5]

Check that the variation of root mean squared
error is lower than 10~r(-1*value). [Default 8]

Force fitted poles to be stable

Do not force fitted poles to be stable. [Default]
Fit with direct term.

Fit without direct term. [Default]

Plot fit result.

Do not plot fit result. [Default]

Disply the status of the fit iteration.

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/sdomainfit.html[10/08/2009 16:29:53]

S-Domain Fit (LTPDA Toolbox)

'CheckProgress' 'off' Do not disply the status of the fit iteration.
[Default]

Algorithm

The function performs a fitting loop to automatically identify model order and parameters in s-
domain. Output is a s—-domain model expanded in partial fractions:

rl rN
f(s) = -~—————- + it e + d
s - pl S - pN

Identification loop stops when the stop condition is reached. Stop criteria are based on two
different approachs:

1. Log residuals difference and root mean squared error
o Log Residuals difference Check if the minimum of the logarithmic difference between
data and residuals is larger than a specified value. ie. if the conditioning value is 2,
the function ensures that the difference between data and residuals is at lest two
order of magnitude lower than data itsleves.
o Root Mean Squared Error Check that the variation of the root mean squared error is
lower than 10r(-1*value).
2. Residuals spectral flatness and root mean squared error
o Residuals Spectral Flatness In case of a fit on noisy data, the residuals from a good
fit are expected to be as much as possible similar to a white noise. This property can
be used to test the accuracy of a fit procedure. In particular it can be tested that the
spectral flatness coefficient of the residuals is larger than a certain giantity sf such
thato < sf < 1.
o Root Mean Squared Error Check that the variation of the root mean squared error is
lower than 10r(-1*value).

Fitting loop stops when the two stopping conditions are satisfied, in both cases.

The function can also perform a single loop without taking care of the stop conditions. This
happens when 'AutoSearch' parameter is set to 'off'.

References

1. B. Gustavsen and A. Semlyen, "Rational approximation of frequency domain responses by
Vector Fitting", IEEE Trans. Power Delivery vol. 14, no. 3, pp. 1052-1061, July 1999.

2. B. Gustavsen, "Improving the Pole Relocating Properties of Vector Fitting", IEEE Trans.
Power Delivery vol. 21, no. 3, pp. 1587-1592, July 2006.

[®]Z-Domain Fit Graphical User Interfaces in LTPDA [#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/sdomainfit.html[10/08/2009 16:29:53]

Graphical User Interfaces in LTPDA (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Graphical User Interfaces in LTPDA

LTPDA has a variety of Graphical User Interfaces:

The LTPDA Launch Bay

The LTPDA Workbench

The LTPDA Repository GUI
The pole/zero model helper
The Spectral Window GUI
The constructor helper

The LTPDA object explorer
The quicklook GUI

[€]S-Domain Fit The LTPDA Launch Bay [#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/gui.html[10/08/2009 16:29:58]

Graphical User Interfaces in LTPDA (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/gui.html[10/08/2009 16:29:58]

The LTPDA Launch Bay (LTPDA Toolbox)

LTPDA Toolbox contents [€]

The LTPDA Launch Bay

The LTPDA Launch Bay GUI allows quick access to all other GUIs in LTPDA. To start the Launch
Bay:

>> Itpdalauncher

.00 LTPDA Launch Bay

A

| LTPDA Warkbench |

Fo-< 2 0 i
| LTPDA Prafarences '

LTPDA REPO GLI

The Launch Bay is automatically started from the Itpda_startup script.

[®]Graphical User Interfaces in LTPDA The LTPDA Workbench [#]

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/gui_launchbay.html[10/08/2009 16:30:08]

The LTPDA Launch Bay (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/gui_launchbay.html|[10/08/2009 16:30:08]

The LTPDA Workbench (LTPDA Toolbox)

LTPDA Toolbox contents [€]

The LTPDA Workbench

The LTPDA Workbench offers a graphical interface for creating signal processing pipelines. By
dragging and dropping blocks which represent LTPDA algorithms, users can build up a signal
processing pipeline and then execute it at the press of a button. The progress of the execution
can be followed graphically on the screen.

The following sections describe the use of the LTPDA Workbench.

Introduction

Mouse and keyboard actions

The canvas

Building pipelines by hand

Using the Workbench Shelf
Building pipelines programatically
Executing pipelines

[«]The LTPDA Launch Bay Loading the LTPDA Workbench [#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/ltpda_workbench.html[10/08/2009 16:30:11]

The LTPDA Workbench (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/ltpda_workbench.html[10/08/2009 16:30:11]

Loading the LTPDA Workbench (LTPDA Toolbox)

LTPDA Toolbox contents

Loading the LTPDA Workbench

Overview

An LTPDA Workbench is a collection of pipelines. Each pipeline can have sub-pipelines which
are represented as subsystem blocks on the parent canvas. Nested subsystems are supported
to any depth.

Only one LTPDA Workbench can be open at any one time, but a collection of pipelines in a
workbench saved on disk can be imported to the current workbench.

Each block/element must have a unique name on a particular canvas.

The foIIowing annotated screen-shot describes the main elements of the workbench interface:

v i Signal Processing
* LinSubtract

Control Paner'_'_'_'_;-_’

Q‘-—F— : __;) o Vorkbench filename

File Edit ju'-uw Format Fipeline Tools Wind m:v He E—I————’ Pmper:y Table
|H Hlf "|lJ il A | X /e=|=|g|d . L T|0|=
L] ¥I|ﬂ
| Pipalings] Lilsrary | Shll | Dopen -
By LTROA kass Retull =
v Myao Tocibar o e
By Corabructor Astadh worubench

- COMEre
= coempute = flatle) |
* condint - Parameter Set
* gonsoiidane - -
* corw L 5 =
: s | resae | Currenit Farameters :
W oo ! Y —— Belected biock — —
LTPDA Block o —a
Lrary 2o a— | e e paamerer o
% el Ty x: 0419y 0130 *—j e
* detrend "f ;i;_.‘nu_{
: it - & [xERRU
- i Canvas @ [vemmu
dopplercorr “ =4 WERRAL
* deansamiple ‘ / # xuas
P e % , __.\'_f '.,1_._“;_”_
search r . .
doms_3 : 0031 ¥ m:'! =]
Werbasity _.CIH-' . H -‘ A N EL

Starting the Workbench

To start the LTPDA Workbench, click on the launcher on the LTPDA Launch Bay. Alternatively,
the workbench can be started from the command window by typing:

>> LTPDAworkbench

You can also get a handle to the workbench so that you can use the programmatic interface. To

do that

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_intro.html|[10/08/2009 16:30:20]

Loading the LTPDA Workbench (LTPDA Toolbox)

>> wb = LTPDAworkbench

If you loose the variable wb, for example, by using the clear command, then you can retrieve a
handle to the workbench by doing

>> wb = getappdata(0O, “LTPDAworkbench®);

More advanced uses of the workbench command interface (such as creating pipelines from
LTPDA objects), are described in Building pipelines programatically.

(€] The LTPDA Workbench Mouse and keyboard actions [#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_intro.html|[10/08/2009 16:30:20]

Mouse and keyboard actions (LTPDA Toolbox)

LTPDA Toolbox

contents

Mouse and keyboard actions

This section describe the various mouse and key actions that are possible on the LTPDA

Workbench.

» Keyboard actions on the main workbench

e Kevboard actions on the Canvas

e Mouse actions on the Canvas

Keyboard actions on the main workbench

or parameter
value (or key)

Action (on Action (on Mac |Description

Windows/Linux) |OS X)

enter on a same Add the block to the active canvas
selected element

in the block

library

enter in property [same Set the new value to the property or

parameter

Keyboard actions on the Canvas

Action (on
Windows/Linux)

Action (on Mac
0OS X)

Description

Arrow keys same Scroll canvas

ctrl-c cmd-c Copy selected elements

ctri-v cmd-v Paste selected elements
shift-arrow keys |same Move selected elements

shift-alt right- [same Jump to next pipeline

arrow

shift-alt left- same Jump to previous pipeline

arrow

ctri-i cmd -1 Open the canvas info dialog panel.
ctrl-b cmd-b Open the "Quick Block" dialog panel.
ctrl-f cmd-f

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_mouseKeyboard.html|[10/08/2009 16:30:26]

Open the "Block Search" dialog
panel.

Mouse and keyboard actions (LTPDA Toolbox)

escape

same

De-select all blocks.

delete

same

Delete selected blocks (or pipes).

Mouse actions on the Canvas

Action (on
Windows/Linux)

Action (on Mac
0OS X)

Description

button

Mouse-wheel same Zoom in and out on the canvas
scroll

drag with left- same Draw rubber-band box to select
mouse-button elements

alt-left—-mouse- |same Move the canvas around

selected block
handles

right-click right-click (or Bring up canvas context menu
ctrl-left-click)

left—click on same De-select all selected blocks or

canvas pipes

left-click on a same Select the block and bring up its

block property and parameter tables

shift-left-click on [same Add the block to the selected blocks

a block

left mouse button |[same Move this and all other selected

down on a block blocks

click-drag on same Resize the block

ctrl-left-click on
block

cmd-left-click on
block

If a single block is selected before
this action then the result of this
action is to connect the two blocks.

mouse-drag on a
port

mouse-drag on a
port

Start drawing a pipe originating from
the port.

release left mouse
button on a port

same

If a pipe was being dragged, then the
source port and destination port are
connected by a pipe.

release left mouse
button on a block

same

If a pipe was being dragged, then the
source port is connected to the first
free input of the destination block.

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_mouseKeyboard.html|[10/08/2009 16:30:26]

Mouse and keyboard actions (LTPDA Toolbox)
1 | | |

Loading the LTPDA Workbench The canvas [#]

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_mouseKeyboard.html|[10/08/2009 16:30:26]

The canvas (LTPDA Toolbox)

LTPDA Toolbox contents [€]

The canvas

Composing LTPDA pipelines is done on a "Canvas". Each top-level pipeline, and each
subsystem, is represented on a canvas. A subsystem block is also a view of pipeline.

Canvas properties

You can set properties of a canvas via the canvas inspector. To open the inspector, hit ctri-i
(cmd-i on Mac OS X) on the canvas.

Canvas Info

author Mr Fish

description

My lovely pipeline for processing my
hard earned data.

created on 2000-02-02 10:45:18
last modified on 2009-02-02 10:58:20

IfCanceI?" If OK “‘

With the canvas inspector you can edit

e The author of the canvas
e A description of the canvas

Searching on the Canvas

You can search for blocks on the current canvas, or across all canvases in the workbench. To
open the block search dialog, hit ctri-f (cmd-f on Mac OS X) on the canvas.

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_canvas.html[10/08/2009 16:30:34]

The canvas (LTPDA Toolbox)

) Elerment
Search in Unknown_2
() Selected Pipeline Unknown_3
Unknown_8
r-‘:\l - - -
(=) All Pipelines Unknown_10
Unknown_9

Search for

Unknown

Algorithm
Cos

sin

times
times
plus

Canvas

Mew Document 2
Mew Document 2
Mew Document 2
Mew Document 2
Mew Document 2

I'r Cancel \I Ir OK W

[®«]Mouse and keyboard actions

©OLTP Team

Building pipelines by hand [#]

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_canvas.html[10/08/2009 16:30:34]

Building pipelines by hand (LTPDA Toolbox)

LTPDA Toolbox contents

Building pipelines by hand

This section describes how to compose pipelines by hand.

* Block types

Adding blocks to the Canvas

Setting block properties and parameters
Connecting blocks

Creating subsystems

[#] The canvas

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_buildHand.htmI[10/08 /2009 16:30:39]

Block types

Building pipelines by hand (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_buildHand.htmI[10/08 /2009 16:30:39]

Block types (LTPDA Toolbox)

LTPDA Toolbox

Block types

contents

Various types of elements can be present on a pipeline. Blocks can have different states: idle,
ready, or executed. These are color coded as

idle

The following table describes these elements:

Block

Name Java Class

Description

algorithm

resize handles

LTPDA
Block

MBlock

A block that
represents a
method of one
of the LTPDA
user classes.
These blocks
hold a
parameter list
(plist) which can
be set in the
parameter table.
They can have
any number of
input and output
ports that the
underlying
algorithm
supports.

resize handles

input \

subsystem name

output

Subsystem [MSubsystem
Block

A block that
represents a
subsystem. This
is a view of
another pipeline
that can be
placed on a
canvas.

MATLAB
Expression
Block

MATBIlock

A block
evaluates a
MATLAB
expression. The
result is stored
in the variable
and can be

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_blocks.htmI[10/08/2009 16:30:48]

Block types (LTPDA Toolbox)

resize handles

)
output

name

passed to
subsequent
blocks.

variable name

(Qarkzandn(L. 107

expression

MATLAB
Constant
Block

MConstant

A block
evaluates a
MATLAB
expression and
stores the result
in the MATLAB
workspace with
the given
variable name.

This is my lovely
pipeline.

Annotation
Block

MAnnotation

A block
containing
editable text to
allow for
annotating
pipelines.

name

Input
Terminal

MTerminal

A block which
represents an
input terminal to
a subsystem.
These blocks
can only be
placed on a
subsystem
canavas.

Output
Terminal

MTerminal

A block which
represents an
output terminal
of a subsystem.
These blocks

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_blocks.htmI[10/08/2009 16:30:48]

Block types (LTPDA Toolbox)

can only be
placed on a
subsystem
canavas.
name
[#]Building pipelines by hand Adding blocks to the canvas [#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_blocks.htmI[10/08/2009 16:30:48]

Adding blocks to the canvas (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Adding blocks to the canvas

LTPDA Algorithm Blocks

To add an LTPDA Algorithm block to the canvas, select the block in the LTPDA library, and
either

e drag the block to the canvas

* hit return to add the block to the canvas

e right-click on the library entry and select 'add block’

You can also use the "Quick Block" dialog. This is especially useful if you know the name of the
block you are looking for. To open the Quick Block dialog, hit ctri-b (cmd-b on Mac OS X) on
the Canvas.

Quick Block

method co

ao/cohere
ao/compute [
ao/consolidate

ao/conv

an/cov

ao/dopplercorr

ao/lcohere

Done

i

To get the block you want, just start typing in the "method" edit field. Once the block you want
is top of the list, just hit enter to add it to the canvas. You can also double-click on the block
list to add any of the blocks in the list.

MATLAB Expression Blocks

To add a MATLAB Expression block to the canvas, right-click on the canvas and select
'Additional Blocks -> MATBIlock' from the context menu.

MATLAB Constant Blocks

To add a MATLAB Constant block to the canvas, right-click on the canvas and select 'Additional
Blocks —> Constant' from the context menu.

Annotation Blocks

To add an annotation block to the canvas, right-click on the canvas and select 'Additional
Blocks -> Annotate' from the context menu.

[#]Block types Setting block properties and parameters [#]

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_addBlocks.htmI[10/08/2009 16:30:54]

Adding blocks to the canvas (LTPDA Toolbox)

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_addBlocks.htmI[10/08/2009 16:30:54]

Setting block properties and parameters (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Setting block properties and parameters

The different block types have different properties that the user can set.

LTPDA Algorithm Blocks

LTPDA Algorithm blocks (MBlocks) have both properties and parameters.
Properties of an MBlock are

Property Description

Name The name of the block as it appears on the canvas Block
names are unique on a canvas. This is also the string that
will be converted to a valid MATLAB variable name when the
pipeline is executed.

Modifier Set this block to be a modifier or not. For more details on
modifier blocks in LTPDA see Calling object methods. The
accepted values are "true" or "false".

To set the properties of a block, select one or more MBlocks, then double click in the value
column entry for the property you want to change. Enter the new value and press return/enter.

Setting the parameter list

LTPDA Algorithm Blocks also have parameters which translate as a parameter list upon
execution. To set the parameters of a block, click on a block (or multiple MBlocks which
represent the same LTPDA algorithm). You will then see the 'current parameters' that the block
holds. To edit the 'key' or 'value' of a parameter, double click the table entry you want to edit,
enter the new value, and hit enter or click OK.

To add or remove parameters from this list use the 'plus' and 'minus’ buttons.

You can also select a set of predefined parameter sets from the drop-down menu above the
parameter table. Having selected a parameter set, you need to click the 'set' button to push
these parameters to the block. You can then go ahead and add or remove parameters from the
'current parameters' on the block.

Editing of most parameter keys and values is done in a simple editor dialog box. However,
there are some key/value pairs which are edited using special dialog boxes:

Built-in models of AO and SSM classes

Both the AO and the SSM classes can be built from pre-defined, built-in models. These are
typically created with a plist containing the key BUILT-IN. If you try to edit the value for this key
for one of these constructors, you will be presented with a dialog box that allows you to
choose from the built-in models. For all other classes, editing the value for the key BUILT-IN is
done via a standard input dialog.

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_blockProps.html|[10/08/2009 16:31:02]

Setting block properties and parameters (LTPDA Toolbox)

Maodels | mdel fd Ssus 2] Ir help \'I

MDC1_FD_SSUS constructs a model of Ssus [:

PSS AR S AR S S AR S S RS s S A
PSS AR S AR S S AR S S RS s S A

DESCRIPTION: MDC1_FD_SSUS constructs a model of
Tsus, the sensitivity v

Ir Cancel \1 I'r OK “1

Pole/zero model editor

If any block has a parameter with the key pzmobEL then the corresponding value will be edited
via the Pole/zero model editor. Here you can type directly in the constructor edit box, or you
can add/remove poles and zeros from the lists. To edit the frequency or Q of a pole or zero,
double-click on the table entry. To enter a real pole or zero (no Q), set the Q to 'NaN'.

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_blockProps.html|[10/08/2009 16:31:02]

Setting block properties and parameters (LTPDA Toolbox)

e T

Pole/zero model editor

Poles feros

Frequency [Hz] Q Frequency [Hz] Q
10 L @
20]

=]+ =]+

Cain 22 Delay (s) 0.0

Constructor pzmodel(22.0, {10.0,[20.0 3.0]}4{0.1},0.0)

[rCancte] (oK “1

Spectral window selector

Many algorithms in LTPDA accept a parameter with the key win for a spectral window
parameter. Editing the value for such a parameter presents the user with a dialog where the

spectral window can be selected from the list of supported windows. You can also type the
constructor directly in the edit box.

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_blockProps.html|[10/08/2009 16:31:02]

Setting block properties and parameters (LTPDA Toolbox)

Choose Spectral Window

Window Type | Kaiser :
Window PSLL 230
Window Size 30

Constructor | specwin('Kaiser', 30, 230.0)

Ir Cancel “1 Ir 0K \I

Repository hostname selector

Editing parameters with the key hostname will give the user a dialog containing the pop-up
menu of possible hostnames. This list of hostnames is taken from the LTPDA Preferences. If the
preferences are changed, the workbench needs to be closed and reopened for the changes to
propogate.

Filenames

If the parameter list contains a parameter with the key FILENAVE, this will be edited using
standard file dialog boxes. If the block algorithm is save a save dialog is presented. In all other
cases, a load dialog is presented.

MATLAB Expression Blocks
MATLAB Expression blocks have two properties:

Property Description

Name The name of the block as it appears on the canvas Block
names are unique on a canvas. This is also the string that
will be converted to a valid MATLAB variable name when the
pipeline is executed.

Expression This is the (valid) MATLAB expression which, when
evaluated, will be set to the variable name.

To set the properties of a block, select one or more MATBlocks then double click in the value
column entry for the property you want to change. Enter the new value and press return/enter.
Alternatively, you can double-click on a MATBlock to get a dialog box where you can enter the
expression.

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_blockProps.html|[10/08/2009 16:31:02]

Setting block properties and parameters (LTPDA Toolbox)

MATLAB Constant Blocks

Setting of properties on a MATLAB Constant block is just the same as MATBlocks; these blocks
only differ in the way they are handled at the time of execution.

Annotation Blocks

To set the text of an Annotation block, double click on the text area to start editing. Click off
the block to end editing.

[®]Adding blocks to the canvas Connecting blocks [#]

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_blockProps.html|[10/08/2009 16:31:02]

Connecting blocks (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Connecting blocks

Blocks of type "LTPDA Block" (MBlock), "Subsystem Block" (MSubsystem), "MATLAB Expression
Block" (MATBIlock), "Terminal Block" (MTerminal) all have input ports or output ports, or both.

These ports are connected together with "pipes" (MPipe is the underlying java class). Output
ports can have more than one pipe connected; input ports can have only one pipe at a time.
The binding object between a port and pipe is a "node" (MNode is the underlying java class).
Nodes are displayed as small black circles.

olus P’b e

‘. cohere
a4 .
J]
af
mﬁ

To connect these blocks together, do one of the following:

e Click and drag from one port to another.
e Click and drag from one output node to an input port.
e Click and drag from one output port to a block. Connection is made to the first free input (if

there is one).
» Click and drag from one output node to a block. Connection is made to the first free input (if

there is one).

» Select a source block, then ctrl-left-click a destination block to join the two. There must be
at least one free input on the destination block. On the source block, the next free output is
used, or the first output if no free outputs are available.

[#]Setting block properties and parameters Creating subsystems [#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_connectBlocks.html[10/08/2009 16:31:08]

Connecting blocks (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_connectBlocks.html[10/08/2009 16:31:08]

Creating subsystems (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Creating subsystems

To create a subsystem on a canvas, right-click on the canvas and select "create subsystem"
from the context menu.

All selected blocks will be placed in the subsystem and all connections will be updated
accordingly.

To edit a subsystem canvas, double-click on the subsystem block to open the corresponding
canvas.

To add new inputs or outputs to a subsystem do one of:

e right-click on the subsystem canvas and select "Additional Blocks -> Input (or Output)"
e right-click on the subsystem block and select "Add Input” or "Add Output”; the
corresponding terminals are placed on the subsystem canvas.

[€]Connecting blocks Using the Workbench Shelf[#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_subsystems.htmI[10/08/2009 16:31:13]

Creating subsystems (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_subsystems.htmI[10/08/2009 16:31:13]

Using the Workbench Shelf (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Using the Workbench Shelf

The Workbench 'Shelf' offers the user the possibility for storing subsystems for later use.
Different categories and sub-categories can be created and subsystems can be added from the
current pipeline to the shelf. The subsystems in the shelf can then be added to other pipelines
at a later time. The shelf is persistent across restarts of the workbench.

It is also possible to export shelf categories to disk and then import them again. This offers the
possibility to exchange shelf categories containing pre-built subsystems.

e Accessing the shelf

e Creating shelf categories

e Adding and using shelf subsystems

e Importing and exporting shelf categories

[€]Creating subsystems Accessing the shelf[#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_shelf_intro.htmI[10/08/2009 16:31:19]

Using the Workbench Shelf (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_shelf_intro.htmI[10/08/2009 16:31:19]

Accessing the shelf (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Accessing the shelf

Access to the workbench shelf is through the tabbed pannel on the left of the workbench. The
following figure shows the shelf.

[Pipelines | Library Sh&IfJ

g4 Default
¥ B4 My nice subsytems
v [sub category 1
&% Spectral Analysis
b G.s sub category 2
v QL Operators
&r RMS

Here you can see the shelf has various sub-categories denoted by the book icons. In addition
we see some subsystems in the sub-categories, denoted by the small pipeline icon.

[€]Using the Workbench Shelf Creating shelf categories[#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_shelf_access.html[10/08/2009 16:31:25]

Accessing the shelf (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_shelf_access.html[10/08/2009 16:31:25]

Creating shelf categories (LTPDA Toolbox)

LTPDA Toolbox

Creating shelf categories

contents IEI

Adding and removing categories is done via the shelf context menu.

Add/remove a category

To add a category or sub-category, right-click on an existing category and choose 'Add sub-

category...".

Removing a category or sub-category is similar: right-click on an existing category and select

'Remove sub-category'.

The root node of the shelf is special: this cannot be removed and only categories can be added

by right-clicking and selecting 'Add category...".

[Pipelines | Library iﬁlf |

¢ Spectra
P Hes sub categ
v [} Operators
&5 RM5

Export category...
Import category...

Add selected subsystems

g4 Default created by: anany
v Q% My nice subsytems created on: 2003,

(Lo 3

[®] Accessing the shelf

Adding and using shelf subsystems [#]

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_shelf_categories.htmI[10/08/2009 16:31:32]

Creating shelf categories (LTPDA Toolbox)

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_shelf_categories.htmI[10/08/2009 16:31:32]

Adding and using shelf subsystems (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Adding and using shelf subsystems

Adding subsystems to the shelf can be done in two ways:

1. via the context menu on the shelf
2. via the context menu on a subsystem

Adding subsystems via the shelf

To add one or more subsystems to the shelf from the current pipeline, do the following:

1. Select one or more subsystems on the current pipeline
2. Right-click on a category in the shelf and choose 'Add selected subsystems'

Adding subsystems via the subsystem context menu

To add a particular subsystem to the shelf, do the following:

1. Select a category in the shelf
2. Right-click on a subsystem on the current canvas and select 'Put on shelf'

Using subsystems from the shelf

Subsystems can be dragged from the shelf to the current pipeline. You can also right-click on a
subsystem in the shelf and choose 'Add to pipeline'.

Hovering the mouse over a subsystem in the shelf reveals some information about the
subsystem:

| Pipelines | Library | Shelf | @00

g Default
¥ B4 My nice subsytems
v QL& sub category 1
L dSpectral Analysis
b G.s sub category 2
v Qi Operators
L4 RMR
created by: hewitson
created on: 2009-07-24 11:33:46

last modified: 2009-07-24 11:48:49
Compute the RMS of the input AD. |

I

If you want to edit or rename a subsystem from the shelf, add it to a pipeline, then make the
required edits, then re-add the edited subsystem to the shelf. When satisfied, you can remove
the old subsystem from the shelf by right-clicking on the subsystem and choosing 'Remove
from shelf'.

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_shelf_subsystems.htmI[10/08/2009 16:31:39]

Adding and using shelf subsystems (LTPDA Toolbox)

[®]Creating shelf categories Importing and exporting shelf categories [#]

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_shelf_subsystems.htmI[10/08/2009 16:31:39]

Importing and exporting shelf categories (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Importing and exporting shelf categories

Shelf categories can be exported and imported.

Export a category

To export a shelf category, right-click on the shelf category and choose 'Export category...".
Then enter a filename to save the category to. Categories are saved to disk in an XML format;
the files have extension '.cat'.

Import a category

To import a category, right click on the shelf root or on an existing category, and choose
'Import category...'. Choose a '.cat' file from the disk.

[#]Adding and using shelf subsystems Execution plans [#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_shelf_exportimport.html[10/08/2009 16:31:44]

Importing and exporting shelf categories (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_shelf_exportimport.html[10/08/2009 16:31:44]

Execution plans (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Execution plans

Content needs written...

[®]Importing and exporting shelf categories Editing the plan [#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_plan_intro.htmI[10/08/2009 16:31:50]

Execution plans (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_plan_intro.htmI[10/08/2009 16:31:50]

Editing the plan (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Editing the plan
Content needs written...
Linking pipelines [#]

[€] Execution plans

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_plan_edit.htmI[10/08/2009 16:31:55]

Editing the plan (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_plan_edit.htmI[10/08/2009 16:31:55]

Linking pipelines (LTPDA Toolbox)

LTPDA Toolbox contents

Linking pipelines
Content needs written...
Building pipelines programatically [#]

Editing the plan

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_plan_linking.htmI[10/08/2009 16:32:00]

Linking pipelines (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_plan_linking.htmI[10/08/2009 16:32:00]

Building pipelines programatically (LTPDA Toolbox)

LTPDA Toolbox contents

Building pipelines programatically

Content needs written...
[®]Linking pipelines Executing pipelines [#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_buildProgram.htmI[10/08 /2009 16:32:06]

Building pipelines programatically (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_buildProgram.htmI[10/08 /2009 16:32:06]

Executing pipelines (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Executing pipelines

Content needs written...

[«]Building pipelines programatically The LTPDA Repository GUI

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_execute.html[10/08/2009 16:32:11]

Executing pipelines (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/lwb_execute.html[10/08/2009 16:32:11]

The LTPDA Repository GUI (LTPDA Toolbox)

LTPDA Toolbox contents [€]

The LTPDA Repository GUI

The LTPDA toolbox contains a client interface that can be used to interact with an LTPDA
repository (see Working with an LTPDA Repository). The client interface can be accessed using
the LTPDA Repository GUI.

[®]Executing pipelines The pole/zero model helper[#]

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/gui_repo.htmlI[10/08/2009 16:32:17]

The LTPDA Repository GUI (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/gui_repo.htmlI[10/08/2009 16:32:17]

The pole/zero model helper (LTPDA Toolbox)

LTPDA Toolbox

contents

The pole/zero model helper

The LTPDA toolbox contains a class (pzmodel) for creating and using pole/zero models. The pole/zero model helper GUI allows the
user to visualise the pole/zero model as it's being designed. It also allows the user to quickly see how the corresponding IIR filter

(miir object) will look for different sample rates.

To start the pole/zero model helper:

>> pzmodel_helper

or click the appropriate button on the LTPDA Launch Bay.

Once the GUI is loaded, you will see the following figure:

pzmodel_helper

e Pola/Zaro antry

10

Frequency [Hz] (Q)

Add pale | | Add zaro
- | - |
| dalate | | dalete

= Plot controls

Gain

sample rate

Nf

1a

18 -

9.8

8.6

9.4

8.2

16

miir constructor string

You can add poles and zeros to the model by entering the frequency (and Q) in the edit boxes, then click add pole or add zero as
appropriate. The response is then updated in the response axes.

http://www.lisa.aei-hannover.de/Itpda/usermanual/ug/gui_pzmodel.htmI[10/08/2009 16:32:25]

The pole/zero model helper (LTPDA Toolbox)

pzmodel_helper

m Pole/Zero entry

10 Frequency [Hz] (Q)

Add pole || Add zara

| delete | | delete

= Plat contrals

1 | Gain

[700 | sample rate
f1
f2

Nf

Frequency [Hz]

= Response
19 ° -
—
\ l
|
N,
: \\\ I
f |
b N |
3 \‘ I
I
N |
PolesZero model f
—=—IIR \ F
1 I T T T TTTI
18 ™ 18 ° 19 19 *
S8 A
1
i
‘l
g y
E B Pid
[- | e
L ‘h—-‘-""‘-.\-' ”}-'-___, =
= \ o
5 M~ /
o
M N
-5 \ o
19 10 ° 18 18 °

miir constructor string

pzmodel(plist{('GAIN', 1, 'POLES', [pole(plist('F', 1,'Q’, NaN})], ZEROS', [zero(plist('F', 10, 'Q", NaN)jl)

[«] The LTPDA Repository GUI

©LTP Team

http://www.lisa.aei-hannover.de/Itpda/usermanual/ug/gui_pzmodel.htmI[10/08/2009 16:32:25]

The Spectral Window GUI

The Spectral Window GUI (LTPDA Toolbox)

LTPDA Toolbox contents

The Spectral Window GUI

The LTPDA Toolbox contains a class for creating spectral window objects (see Spectral Windows). A
graphical user interface allows the user to easily explore the time-domain and frequency-domain
response of any particular window.

To start the GUI:

>> specwin_viewer

or click the appropriate button on the Launch Bay.
You should then be presented with the following figure:

0 LTPDA Spectral Window Viewer
Window Type | Kaiser = . Window: Kaiser
Window Size 100
A
Window PSLL 150 0.2 / \
[Plot Time-domain | | Plot Freq-domain | a.7¢ /
@.6
3 / \
2 @.5 I \
= 0.4
alpha = 6.18029 £ / \
psll =150 B.3
rov=73.3738 / \
nenbw = 2.52989 8.2
w3db = 2.38506 o1 / \
flatness = -0.52279 : / AN
— o
Y] 44 BE B 5%
sample
specwin(Kaiser', 100, 150.000000)
[«] The pole/zero model helper The constructor helper[#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/gui_specwin.htmI[10/08/2009 16:32:32]

The constructor helper (LTPDA Toolbox)

LTPDA Toolbox contents [€]

The constructor helper

Since LTPDA is an object-oriented system, the user must create objects of different types using
the appropriate constructors. The various constructor forms for each different LTPDA class can
be explored using the constructor helper.

To start the constructor helper GUI:

>> Itpda_constructor_helper
or click the appropriate button on the Launch Bay.

You should then be presented with the following figure:

LTPDA Constructor Helper

Variable

Selecting a class from the drop-down list reveals the possible parameter sets for that class
constructor. Selecting a parameter set reveals the default parameter list constructor string for
constructing that class object in this way. For example, if we want to construct and Analysis
Object using the time-series constructor, select the AO class then click on "From Time-series
Function”. You should then see:

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/gui_constructor.html[10/08/2009 16:32:40]

The constructor helper (LTPDA Toolbox)

LTPDA Constructor Helper

Class [as] ao(plist{ TSFCN', 't', 'F&', 10,
- : 'NSECS', 1, 'T0', |
time(plist(TIMEFORMAT",
Sets 'yyy-mm-dd HH:MM:SS.FFF',
From MAT Fil TIMEZONE', 'UTC',
Flom Functian” 'UTC_EPOCH_MILLI', 0))]))
Fram Values

!' ram !-mq UenCy-senes !'IJI'IC'[K:II'I

Fram Window
Fram Wavefarm
Fram Palynomial
Fram Reposiory
Fram Plist

Variable

You can then edit the parameter list and build the object by clicking on Build.

[€] The Spectral Window GUI The LTPDA object explorer [#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/gui_constructor.html[10/08/2009 16:32:40]

The LTPDA object explorer (LTPDA Toolbox)

LTPDA Toolbox contents [€]

The LTPDA object explorer

Since LTPDA works mainly with complex object types, it is often useful to explore the content
of these objects graphically, particularly for Analysis Objects which may contain deep history
trees. To do this, LTPDA offers the object explorer.

To start the object explorer:

>> explore_ao
or click the appropriate button on the Launch Bay.

The user is then presented with the following figure:

o~

explore the object: obj_ws
W obj_ws
v an:obj
name nist s
g data FIStory Uject
v [A] gl .
[t name History-Lewvel: 1
] version
[plist
HH inhists
invars
EHn
EH pn
b [&] created
Consver
[#] provenance
description

MName Size

mifile
mfilename
md file
mdlfilename
3 plist
version
b [#] created
3 param:pl
3 param:p2
v plist:pl
name
b [&] params
version
b [#] created
plist

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/gui_explorer.ntmlI[10/08 /2009 16:32:47]

1:ao]
TSFCH=t,
F3=10, N3ECS=
1, TO=1970-01-01
00:00:00.000,
RAND_STATE=
[S62436069;5212556249])

Analysis Object explorer

The LTPDA object explorer (LTPDA Toolbox)

The object list is filled with all LTPDA User Objects currently in the MATLAB workspace.

[®] The constructor helper The quicklook GUI

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/gui_explorer.ntmlI[10/08 /2009 16:32:47]

The quicklook GUI (LTPDA Toolbox)

LTPDA Toolbox contents [€]

The quicklook GUI

To quickly view all LTPDA objects currently in the MATLAB workspace, you can use the LTPDA
Quicklook GUI.

To start the quicklook GUI:

>> ltpdaquicklook
or click the appropriate button on the Launch Bay.

The user will then be presented with the following figure:

LTPDA Quicklook

name: Maone
provenance: created by
hewitson@bobmac-2.local[192.168.2.2] an
MACI/7.E (R2008ay1.0 RC1 (R2008a) at
2008-03-17 19:49:54 368
description:

data: tsdata /t [10x1] | (0,00 {0.1,0.1)
(0.2,0.2)(0.3,0.3) (0.4,0.4) ...

hist: history / ao / &ld: ao.m,v 1.92
2008/03/13 20:33:38 hewitson Exp &
mfilename:
mid filenarre:

[Refrash

[iplt | [plothistory |

The object list is filled with all LTPDA User Objects currently in the MATLAB workspace.

[«] The LTPDA object explorer Working with an LTPDA Repository [#]

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/gui_quicklook.htmlI[10/08/2009 16:32:53]

The quicklook GUI (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/gui_quicklook.htmlI[10/08/2009 16:32:53]

Working with an LTPDA Repository (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Working with an LTPDA Repository

Content needs written...

[«] The quicklook GUI What is an LTPDA Repository [#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/repo.htmI[10/08/2009 16:32:59]

Working with an LTPDA Repository (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/repo.htmI[10/08/2009 16:32:59]

What is an LTPDA Repository (LTPDA Toolbox)

LTPDA Toolbox contents [€]

What is an LTPDA Repository

Introduction

An LTPDA repository has at its core a database server (in fact, a MySQL server). A single MySQL
server can host multiple databases (LTPDA repositories). A single database/repository
comprises a particular set of database tables. These tables hold meta-data about the objects
stored in the database.

Since the core engine is a MySQL database, in principle any MySQL client can be used to
interface with the repository. In order to submit and retrieve objects in the proper way (entering
all expected meta-data), it is strongly suggested that you use the LTPDA Toolbox client
commands submit and Itpda_uo/retrieve or the MATLAB LTPDA repository GUI (repogui).

Any standard MySQL client can be used to query and search an LTPDA repository. For example,
using a web-client or the standard MySQL command-line interface. In addition, the LTPDA
Toolbox provides two ways to search the database: using the command utils.mysql .dbquery Or
using the LTPDA repository GUI (repogui). It is also possible to use the Visual Query Builder
provided with the MATLAB Database Toolbox for interacting with a repository.

Database primer

A MySQL database comprises a collection of tables. Each table has a number of fields. Each
field describes the type of data stored in that field (numerical, string, date, etc). When an entry
is made in a table a new row is created. Interaction with MySQL databases is done using
Structured Query Language (SQL) statements. For examples see MySQL Common Queries.

Database design

The database for a single repository uses the tables as shown below:

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/repo_whatis.htmI[10/08 /2009 16:33:06]

matlab:web('http://www.mysql.com')
matlab:web('http://dev.mysql.com/doc/refman/5.1/en/examples.html')

What is an LTPDA Repository (LTPDA Toolbox)

objs objmeta
id e | id
hash | ——=tobj id
xml obj_type
name
created
users transactiops collections version
ird ird ird ;
firstnamé——_| | obj_id v nobjs B tname
familyname = user id = obj_ids os
username transdate submitted
email direction commenti
telephone cOmment2
institution comment3
commentd
comments
commenté
validated
vdate
miir/mfir a0
il il W
obj_id obj_id
in_file data_type
fs data_id
mfilename
mdlfilename
xydata cdata tsdata fsdata
idd il idd idd
Xunits Xunits Xunits Xunits
yunits yunits yunits yunits
fs fa
nsecs
10

As you can see, each object that is submitted to a repository receives a unique ID number. This
ID number is used to link together the various pieces of meta-data that are collected about
each object. In addition, each object that is submitted is check-summed using the MD5
algorithm. That way, the integrity of each object can be checked upon retrieval.

In order to access a particular repository you need:

The IP address of the MySQL host server

The name of the repository (the database name)

e An account on the MySQL host server

e Permissions to access the desired database/repository

The main database tables
An LTPDA repository consists of the following database tables:

objs table

The objs table stores the XML representation of the submitted object. At this point, each object
in the database is assigned a unique identifier. Together with the database name and
hostname/ip of the server, this forms a unique tag for all LTPDA objects.

Field |Data Description

Type
id Int(11) |A unique identification number for all LTPDA objects in
this database. This value is the link between all database
tables.

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/repo_whatis.htmI[10/08 /2009 16:33:06]

matlab:web('http://en.wikipedia.org/wiki/MD5')
matlab:web('http://en.wikipedia.org/wiki/MD5')

What is an LTPDA Repository (LTPDA Toolbox)

hash |text An MD5 hash of the XML representation of the object.

xml longtext|The XML representation of the object. This field can be
dumped directly to an XML file and should be readable in
LTPDA.

objmeta table

The objmeta table stores various pieces of information associated with the object being
submitted. The aim of this table is to provide a lot of useful fields on which to perform
searches and queries.

Field Data Description

Type
id Int(11) |A unique identification for all entries in this

table.

obj_id Int(11) |The object id of the object in the objs table.
obj_type text The (LTPDA) class of this object.
name text The user-assigned name of this object.
created datetime |The date and time this object was created.
version 1Bt The CVS tag of the object constructor code.
ip text The IP address of the machine which

submitted the object.

hostname text The hostname of the machine which
submitted the object.

0s text The operating system of the machine which
submitted the object.

submitted datetime |The date and time the object was submitted.

experiment_title |text A title for the experiment associated with
the object.

experiment_desc text A description of the experiment associated

with the object.

analysis_desc et A description of the analysis associated with
the object.
quantity text If applicable, the physical quantity

associated with the data in the object.

additional_authors |text Any additional people involved in creating

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/repo_whatis.htmI[10/08 /2009 16:33:06]

What is an LTPDA Repository (LTPDA Toolbox)

this object.
additional_comments |text A free-form field of additional comments.
keywords text A list of keywords associated with the
object.
reference_ids HEE ID numbers of any other objects associated

with this object.

validated tinyint(1) |A boolean field indended to indicate
validated objects.

vdate datetime |The date/time the object was validated.

transactions table

The transactions table records all user transactions. A transaction corresponds to submitting or
retrieving a single or a collection of LTPDA objects.

Field Data Description
Type
id Int(11) |A unique identification number this table entry.

obj_id |int(11) |The object id of the object in the objs table.

user_id |int(11) |The unique ID number of the user who carried out the
transaction.

transdate [datetime|The date/time of the transaction.

direction|text The direction of the transaction: 'in' or 'out'.

users table
The users table stores information about the users allowed to access the database.

Field Data |Description
Type
id Int(11) A unique identification number for all entries in this
table.

firstname [text |The firstname of the user.

familyname |text |The family name of the user.

username |text |The ysername (login name) of the user.

email text |A valid e-mail address for the user.

telephone |text |A telephone numnber for the user.

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/repo_whatis.htmI[10/08 /2009 16:33:06]

What is an LTPDA Repository (LTPDA Toolbox)

institution|text |The institution of the user.

collections table

The collections table stores virtual collections of objects submitted to the database. When the
user submits one or more objects at the same time, this constitutes a collection. In this case a
collection ID number is assigned next to a list of the object IDs in the collection. This allows the
user to retrieve collections of objects based on the collection ID alone; no information about
the individual object IDs is required.

Field |Data [Description

Type
id Int(11)|A unique identification number for this collection of
objects.
nobjs |int The number of objects in the collection.

obj_ids|text A comma separated list of object IDs.

Additional database tables

As well as the main database tables, additional meta-data tables are used to capture extra
meta-data about some of the LTPDA objects.

ao table
The ao table stores additional meta-data specific to analysis objects.

Field Data |Description
Type
id Int(11)|A unique identification number for all entries in the
table.
obj_id Int(11)|The unique ID of the object.

data_type |text |The type/class of the data stored in the AO.

data_id Int(11)|The unique ID of the data object listed in one of the
data meta-data tables.

description|text |The description property of the AO.

mfilename |text |The filename of any m-file attached to the AO.

mdlfilename|text |The filename of any SIMULINK model file attached to
the AO.

miir table
The miir table stores additional meta-data specific to miir filter objects.

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/repo_whatis.htmI[10/08 /2009 16:33:06]

What is an LTPDA Repository (LTPDA Toolbox)

Field |Data |Description
Type
id INt(11)|A unique identification number for all entries in the table.

obj_id |int(11)|The unique ID of the object.

in_file|text |The input filename (if applicable) used to create the filter
object

fs Int(11)|The sample rate of the data the filter is designed for.

mfir table
The mfir table stores additional meta-data specific to mfir filter objects.

Field |Data |Description
Type
id Int(11)|A unique identification number for all entries in the table.

obj_id |int(11)|The unique ID of the object.

in_file|text |The input filename (if applicable) used to create the filter
object

fs INt(11) |The sample rate of the data the filter is designed for.

tsdata table
The tsdata table stores additional meta-data specific to tsdata (time-series data) objects.

Field |Data Description

Type
id Int(11) |A unique identification number for all entries in the table.
Xunits |text The X-units associated with this time-series.
yunits |text The Y-units associated with this time-series.
fs Int(11) |The sample rate of the data the filter is designed for.
nsecs |[int The duration (number of seconds) of data in the object.
t0 datetime |The date/time associated with the start (first sample) of

the time-series.

fsdata table
The fsdata table stores additional meta-data specific to fsdata (frequency-series data) objects.

Field |Data

Type

Description

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/repo_whatis.htmI[10/08 /2009 16:33:06]

What is an LTPDA Repository (LTPDA Toolbox)

id INt(11)|A unique identification number for all entries in the table.

xunits |text |The X-units associated with this time-series.

yunits [text |The Y-units associated with this time-series.

fs Int(11)|The sample rate of the data the filter is designed for.

cdata table
The cdata table stores additional meta-data specific to cdata (1D data) objects.

Field |Data |Description
Type
id Int(11) |A unique identification number for all entries in the table.

xunits |text |The X-units associated with this time-series.

yunits [text |The Y-units associated with this time-series.

xydata table
The xydata table stores additional meta-data specific to xydata (2D data) objects.

Field |Data |Description
Type
id INt(11)|A unique identification number for all entries in the table.

xunits |text |The X-units associated with this time-series.

yunits |text |The Y-units associated with this time-series.

Working with an LTPDA Repository Connecting to an LTPDA Repository [#]

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/repo_whatis.htmI[10/08 /2009 16:33:06]

Connecting to an LTPDA Repository (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Connecting to an LTPDA Repository

Connection to an LTPDA Repository uses the JDBC interface of the Database toolbox. The
command utils.mysql.connect can be used to connect to a repository. It takes the following
input arguments:

hostname |A hostname for
the repository

dbname ||A database name
to connect to

You will then be prompted for a valid username and password. Here is an example call:

>> conn = utils.mysqgl.connect("130.75.117.67", “ltpda_test")
** Connecting to 130.75.117.67 as john.doe...
** Connection status:
DatabaseProductName: "MySQL*"
DatabaseProductVersion: "5.0.45"
JDBCDriverName: "MySQL-AB JDBC Driver-
JDBCDriverVersion: [1x103 char]
MaxDatabaseConnections: O
CurrentUserName: "john.doe@130.75.117.67"
DatabaseURL: "jdbc:mysql://130.75.117.67/1tpda_test”
AutoCommitTransactions: "True-

The result is a database object which can be further used to interact with the repository.
To disconnect from the server, use the close method of the database class:

>> close(conn)

[€«]What is an LTPDA Repository Submitting LTPDA objects to a repository [#]

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/repo_connect.html[10/08/2009 16:33:12]

Connecting to an LTPDA Repository (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/repo_connect.html[10/08/2009 16:33:12]

Submitting LTPDA objects to a repository (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Submitting LTPDA objects to a repository

Any of the following user objects can be submitted to an LTPDA repository:

ao

miir

mfir
filterbank
pzmodel
timespan
ssm
parfrac
rational
smodel
matrix
plist

There are three different methods which submit/update object(s) to
the repository

e submit

Submits the given collection of objects to an LTPDA Repository. If multiple objects are
submitted together, a corresponding collection entry will be made. The objects are stored
as a XML representation and if possible a binary representation (see bsubmit).

e bsubmit

Submits the given collection of objects to an LTPDA Repository. If multiple objects are
submitted together, a corresponding collection entry will be made. The objects are stored
only as a binary representation.

In order to retrieve this object by calling a constructor it is necessary to set the key
"BINARY" to 'yes' because the XML representation doesn't exist. For example the AO

constructor 'From Repository'

The submission process

When an object is submitted, the following steps are taken:

1. The userid of the user connecting is retrieved from the Users table of the repository
2. For each object to be submitted:

The object to be submitted is checked to be one of the types listed above

The name, created, and version fields are read from the object

The object is converted to an XML text string

An MD5 hash sum is computed for the XML string

The XML string and the hash code are inserted in to the objs table

The automatically assigned ID of the object is retrieved from the objs table
Tries to create a binary representation of the object. If this is possible and it is
possible to store for this object type a binary, then insert the binary

Various pieces of meta-data (object name, object type, created time, client IP
address, etc.) are submitted to the objmeta table

9. Additional meta-data is entered into the table matching the object class (ao, tsdata,

NOUVTNN WN =

0]

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/repo_submit.html|[10/08/2009 16:33:17]

matlab:web(ao.getInfo('ao', 'from repository').tohtml, '-helpbrowser')

Submitting LTPDA objects to a repository (LTPDA Toolbox)

etc.)
10. An'in' entry is made in the transaction table recording the user ID and the object ID

3. A entry is then made in the collections table, even if this is a single object submission
4. The object IDs and the collection ID are returned to the user

Submitting objects

Objects can be submitted using the command submit. This command takes at least two inputs:

object | The object to
submit

sinfo |An information
structure (see
below)

The information structure should have the following fields:

“conn*® - database connection object

“"experiment_title” - a title for the submission (Mandatory, >4 characters)

"experiment_description® - a description of this submission (Mandatory, >10 characters)

"analysis_description*® - a description of the analysis performed (Mandatory, >10
characters){;

"quantity” - the physical quantity represented by the data);

"keywords* - a comma-delimited list of keywords);

“"reference_ids” - a string containing any reference object id numbers

"additional comments*” - any additional comments

"additional_authors*® - any additional author names

The following example script connects to a repository and submits an AO:

% Connect _to a repository
conn = utils.mysqgl.connect("130.75.117.67%, "ltpda_test");

% Load the AO
a = ao("result.xml®);

% Build an information structure
sinfo.conn conn;

sinfo.experiment_title "Interferometer noise-;

sinfo.experiment_description "Spectral estimation of interferometer output signal”;
sinfo.analysis_description "Spectrum of the recorded signal”;

sinfo.quantity "photodiode output®;

sinfo.keywords "interferometer, noise, spectrum”;

sinfo.reference_ids "t

sinfo.additional _comments
sinfo.additional _authors

“none”;
“no one-";

% Submit the AO
[ids, cid] = submit(a, sinfo);

% Close the connection
close(conn);

The ID assigned to the submitted object is contained in the first output of the submit function:

% Inspect the object ID
disp(ids)
212

Submitting collections

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/repo_submit.html[10/08/2009 16:33:17]

Submitting LTPDA objects to a repository (LTPDA Toolbox)

Collections of LTPDA objects can also be submitted. Here a collection is defined as a group of
objects submitted at the same time. In this way, a single information structure describing the
collection is assigned to all the objects. The collection is just a virtual object; it is defined by a
list of object IDs in the database. The following example script connects to a repository and
submits three AOs:

% Connect to a repository
conn = utils.mysq connect(130.75.117.67, "ltpda_test");

% Create objects to submit

ol ao(plist(“waveform®, "sine wave®, "f", 1, "phi", O, "nsecs”, 10, "fs", 100));
02 pzmodel (1, 10, 100)'

o3 plist("b", 2, "c", "asd");

% Create an information structure

sinfo.conn = connj;

sinfo.experiment_title "submit multiple objects”;
sinfo.experiment_description "this is just a test of the whole thing~;
sinfo.analysis_description "no analysis this time";

sinfo.quantity -
sinfo.keywords
sinfo.reference_ids
sinfo.additional _comments
sinfo.additional_authors

“none” ;
“no one";

% _ Submit the objects)
[ids, cid] = submit(ol, o2, 03, sinfo)

% Close connection
close(conn);

% END

If the verbosity level you set up on your LTPDA Toolbox preferences GUI is at lest 'PROC1',
running this script yields an outut similar to the following:

** Connecting to 130.75.117.67 as john.doe...

** Connection status:

DatabaseProductName: “MySQL*®

DatabaseProductVersion: "5.0.45"

JDBCDriverName: “MySQL-AB JDBC Driver-

JDBCDriverVersion: [1x56 char]

MaxDatabaseConnections: 0O

CurrentUserName: "hewitson@pixFfirewall.aei.uni-hannover.de
DatabaseURL: *"jdbc:mysql://130.75.117.67/1tpda_test*
AutoCommitTransactions: "True*

M: running ao/ao
constructing from plist
running lItpda uo/submit
sinfo structure is valid.
submitting objects to repository.
got user 1d 1 for user: john.doe
submitting object: ao / sine wave
running ltpda_uoh/created
running ltpda uoh/created
uploading XML data...
done.
submitted object ao with id 234
running query: insert into bobjs (obj_id, mat) values (?, 9)
running query INSERT INTO objmeta SET obJ 1d=234,0bj_type="ao”,name="sine
wave" ,created="2009-07-30 04:02:28",version="$I1d: repo_. submit_content_html,v 1.9 2009/08/03
12:29:51 mauro Exp $",i1p="193.205. 193.171" ,hostname="mauro-huel lers-
macbook . local *,0s="MACI* , submi tted="2009-07-30 06:02:39" ,experiment_title="submit multiple
objects® experlment desc="this is just a test of the whole

=== EEEEEE

thing”, reference ids="",additional_comments="none”,additional_authors="no
one- keywords— quantlty— ,analysis_desc="no analysus this time~;
M: made meta-data entry

M: running query INSERT INTO tsdata SET xunits=" [s] ",yunits=" []
" ,Fs=100,nsecs=10,t0="1970-01-01 00:00:00";

M: running query INSERT INTO ao SET
obj_i1d=234,data_type="tsdata” ,data_id=70,description="",mfilename="",mdIfilename="

M: running query INSERT INTO transactions SET Obj 1d=234,user_ “id=1, transdate >*2009-07-
30 04:02:28",direction="in"

M: updated transactions table

M: submitting object: pzmodel / None

M: running ltpda_uoh/created

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/repo_submit.html|[10/08/2009 16:33:17]

Submitting LTPDA objects to a repository (LTPDA Toolbox)

M: running ltpda uoh/created
M: uploading XML data. ..
M done.
M submitted object pzmodel with id 235
M running query: insert into bobjs (obj id, mat) values (?,7?)
M running query INSERT INTO objmeta SET
obj 1d=235,0bj type="pzmodel* ,name="None" ,created="2009-07-30 04:02:28",version="%$I1d:
repo_submit _content_html,v 1.9 2009/08/03 12:29:51 mauro Exp
$",ip="193.205.193.171" ,hostname="mauro-huel lers-macbook. local " ,0s="MACI ", submi tted="2009-07 -
30 06:02:42" ,experiment_title="submit multiple objects”,experiment_desc="this is just a test
of the whole thing~,reference_ids="",additional_comments="none",additional_authors="no
one” ,keywords="",quantity="" ,analysis_desc="no analysis this time~";
: made meta-data entry
M: running query INSERT INTO transactions SET obj i1d=235,user_id=1,transdate="2009-07-
30 04:02:28",direction="in";
M: updated transactions table
: submitting object: plist / none
M: uploading XML data. ..
M done.
M submitted object plist with id 236
M running query: insert into bobjs (obj _id, mat) values (?,7?)
M running query INSERT INTO objmeta SET
obj 1d=236,0bj type="plist”,name="none",created="2009-07-30 04:02:28",version="%I1d:
repo_submit _content_html,v 1.9 2009/08/03 12:29:51 mauro Exp
$",ip="193.205.193.171" ,hostname="mauro-huel lers-macbook. local " ,0s="MACI " ,submi tted="2009-07 -
30 06:02:43" ,experiment_title="submit multiple objects”,experiment_desc="this is just a test
of the whole thing~,reference_ids="",additional_comments="none",additional_authors="no
one” ,keywords="",quantity="",analysis_desc="no analysis this time~;
: made meta-data entry
M: running query INSERT INTO transactions SET obj i1d=236,user_id=1,transdate="2009-07-
30 04:02:28",direction="in";
: updated transactions table
: running query INSERT INTO collections SET nobjs=3,obj ids="234,235,236";
: made collection entry
: submission complete.

Connecting to an LTPDA Repository Exploring an LTPDA Repository [#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/repo_submit.html|[10/08/2009 16:33:17]

Exploring an LTPDA Repository (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Exploring an LTPDA Repository

Since an LTPDA repository is just a MySQL database, you can query the database using standard
SQL commands via any of the popular MySQL clients. In addition, the LTPDA toolbox provides a
simplified command that can be used to execute simple queries with only basic SQL
knowledge.

The command is utils.mysql.dbquery and it can be used to perform various queries. It takes the
following input arguments:

conn A database
connection
object

tablename || The name of a
table to search

SRR The query string
written in MySQL
SQL syntax

Examples of usage are:

Searching particular tables

- 2005>)info = utils_mysql.dbquery(conn, "select * from objmeta where 1d>1000 and
1d< ")

>> info = utils.mysql.dbquery(conn, "ao", "1d>1000 and i1d<2000%);

>> info = utils.mysql.dbquery_dbquery(conn, "objmeta-”, "name like "x12"%);

>> info = utils.mysqgl.dbquery(conn, “users-, “username=""aouser'");

>> info = utils.mysqgl.dbquery(conn, "collections”, "id=3");

>> info = utils.mysqgl.dbquery(conn, “collections®, “obj ids="1,2"");

>> info = utils.mysgl.dbquery(conn, "transactions®, “user_id=3");

>> info = utils.mysql.dbquery(conn, “transactions®, "obj_1d=56");

Retrieving a list of tables

You can retrieve a list of the tables in a database with the call:

>> info = utils.mysql.dbquery(conn)

High-level queries

Various standard queries are envisaged which ask typical questions, such as: "Give me data for
a particular signal spanning a particular time-span”.

Formulating this question as an SQL query requires a good knowledge of the SQL syntax used
by MySQL. The query has to search across multiple tables in order to gather the IDs of the
objects that fulfill the query. For these standard questions, high-level functions will be built
which perform the query given some input information. This avoids the user having to
formulate complicated SQL statements.

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/repo_explore.htmlI[10/08 /2009 16:33:23]

Exploring an LTPDA Repository (LTPDA Toolbox)

The following high-level queries currently exist in the toolbox:

I'tpda_getAOsInTimeSpan||Retrieve particular AOs in the given time-span

[#]Submitting LTPDA objects to a repository Retrieving LTPDA objects from a repository [#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/repo_explore.htmlI[10/08 /2009 16:33:23]

Retrieving LTPDA objects from a repository (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Retrieving LTPDA objects from a
repository

Objects can be retrieved from the repository either by specifying an object ID or a collection ID.
The LTPDA Toolbox provides the function Itpda_uo.retrieve to retrieve objects. In additon, the
constructors of each user class can be used to retrieve objects of that class.

The retrieval process

When an object is retrieved, the following steps are taken:

The object type for the requested ID is retrieved from the objmeta table
A call is made to the appropriate class constructor

The class constructor retrieves the XML string from the objs table

The XML string is then converted into an XML Xdoc object

The Xdoc object is then parsed to recreate the desired object

Ui WN -

Retrieving objects

To retrieve an object, you must know its object ID, or the ID of the collection that contains that
object. The following script shows an example of retrieving a single object:

% Connect to a repository
[conn, username] = utils_mysqgl.connect("130.75.117.67", “ltpda_test");

% Retrieve the object
q = Itpda_uo.retrieve(conn, 12);

% Close connection
close(conn);

Note that the retrieved object belongs, in general, to the class Itpda_uo, because the retrieve
function is a method of that superclass.

If you already know the class of the object (for example, ao), you can directly call the class
constructor method:

% Define the hostname and database
hostname = "130.75.117.67";
database "ltpda_test";

% Retrieve the object
q = ao(plist("hostname®, hostname, "database®”, dbname, "ID", 12));

If you know the collection that contains the object, and the class, then you can directly call the
class constructor method:

% Retrieve the object

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/repo_retrieve.htmI[10/08/2009 16:33:28]

Retrieving LTPDA objects from a repository (LTPDA Toolbox)

q = ao(plist("hostname®, hostname, "database®, dbname, "CID", 2));

In this case, all AOs in the collection with CID 2 will be retrieved and stored in q.

Multiple objects can be retrieved simultaneously by giving a list of object IDs. For example
q = lItpda uo.retrieve(conn, 1,2,3);

When multiple objects are requested, the results are returned in a cell array.

Retrieving object collections

Collections of objects can be retrieved by specifying the collection ID. The following script
retrieves a collection:

% Connect to a repository
[conn, username] = utils.mysqgl.connect("130.75.117.67", "ltpda_test");

% Retrieve the collection i
q = Itpda_uo.retrieve(conn, “Collection®, 1);

% Close connection
close(conn);

The output is a cell array containing the objects retrieved.

Retrieving binary objects

The retrieval process may be speeded up by taking advantage of the fact that the objects are
stored in the databases also in binary form. This can be achieved by using the parameter
'binary', that will build the object from the corresponding binary representation, if stored on
the database.

% Connect to a repository
[conn, username] = utils.mysqgl.connect("130.75.117.67", "“ltpda_test");

% Retrieve the collection)
q = ao(plist("hostname®, hostname, "database®, dbname, "ID", 12, "binary®, "yes"));

% Close connection
close(conn);

If the binary representation is not in the database, the object will be built from the xml one.

[#]Exploring an LTPDA Repository Using the LTPDA Repository GUI

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/repo_retrieve.htmI[10/08/2009 16:33:28]

Using the LTPDA Repository GUI (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Using the LTPDA Repository GUI

The LTPDA Toolbox provides a graphical user interface for interacting with an LTPDA
repository.

Starting the repository GUI

Connecting to a repository

Submitting objects to a repository

Querying the contents of a repository

Retrieving objects and collections from a repository

Starting the LTPDA Repository GUI

The GUI can be started using the command

>> repogui

The interface allows submission and retrieval of objects, as well as querying of a repository.

[#]Retrieving LTPDA objects from a repository Connecting to a repository [#]

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/repo_gui.htmI[10/08 /2009 16:33:33]

Using the LTPDA Repository GUI (LTPDA Toolbox)

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/repo_gui.htmI[10/08 /2009 16:33:33]

Connecting to a repository (LTPDA Toolbox)

LTPDA Toolbox

contents

Connecting to a repository

The first tab pane is the connection panel.

o~

LTPDA Repository GUI

Connection Submit Quary Retrigve

I. lncalhast = .I ocahost Server hostname

| Y

| ipda_test = tpda. tost Database Get DBs

Cannact

Status: not connected

The user can select one of the pre-defined hosts or type a new hostname or IP address into the
Server hostname field. If the database name is already known, it can be entered directly in the
text field. If the database name is not known, a list of LTPDA repositories available on that
particular host can be retrieved by clicking on the 'Get DBs' button. If the user has not already
authenticated with the host, a login dialog will be presented prompting the user for a username
and password. If authentication is successful, the drop-down menu to the left of the database
name text entry field will be filled with the names of the available repositories.

The user can then select a repository and connect to it by clicking the 'Connect' button. If the
user has permissions to connect to that particular repository, the repository GUI will hold a
database connection object for use on the other panels of the GUI.

Disconnecting from a repository

To disconnect from the current repository, click the 'Disconnect' button. This must be done
before being able to connect to a different repository.

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/repo_gui_connect.htmI[10/08/2009 16:33:40]

Connecting to a repository (LTPDA Toolbox)

[€]Using the LTPDA Repository GUI Submitting objects to a repository[#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/repo_gui_connect.htmI[10/08/2009 16:33:40]

Submitting objects to a repository (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Submitting objects to a repository

Objects can be submitted to the repository using the 'Submit' panel shown below.

8 O LTPDA Repository GUI
Connection Submit Query Retrieve
LTPDA Objects Experiment Title Ay Experiment
fac) |
a0y
aa)
ao) Experiment description My experment was to do this and that with some data.
a0y
a0y
mfir)
iirf r[?:"n
pl1 (plist)
pzm (pzmadel)
5 (specwin)
t (time)
ts (timespan)
Analysis description The data was analysed using the magical new FOO agarhm.
Quantity Sensar outgut
Keywords
“00, sensor
Reference 1Ds one
(Fofrash list Additional Commants
Additional Authors
| Submit
Status: not connected

Selecting the objects to submit

The objects available for submission are LTPDA objects currently in the MATLAB workspace.
Clicking the 'Refresh list' button will refresh the list of objects. The user can ctrl-click to
select a subset of objects in the list for submission.

Completing the submission form

In order to ease subsequent usage of data submitted, and to allow for high level queries to be
performed, the submission process must be completed with additional and sensitive
informations associated with the data included in the objects. The first three fields, marked in

red, are mandatory (a submssion without specifying those informations will fail). The availble
fields are:

e Experiment title A short title for the experiment from which the data originate. Mandatory

field, to be filled with more that 4 characters.
* Experiment description A description of the experiment from which the data originate.

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/repo_gui_submit.html[10/08/2009 16:33:47]

Submitting objects to a repository (LTPDA Toolbox)

Mandatory field, to be filled with more that 10 characters.

* Analysis description A description of the analysis performed on the data. Mandatory field,
to be filled with more that 10 characters.

e Quantity The physical quantity that the data represent.

e Keywords A comma-delimited list of keywords.

e Reference IDs A list od object IDs that are relevant to this/these results.

e Additional Comments Anything else the user wants to say about the objects being
submitted.

e Additional Authors A list of people who helped creating these object(s)

After inserting the useful information by filling the corresponding entries, the user can proceed
with the submission by clicking the 'Submit' button. The Matlab window will show the response
from the repository, including the IDs assigned to the submitted objects.

[€]Connecting to a repository Querying the contents of a repository[#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/repo_gui_submit.html[10/08/2009 16:33:47]

Querying the contents of a repository (LTPDA Toolbox)

LTPDA Toolbox contents [€]

Querying the contents of a repository

Querying an LTPDA repository is done using standard SQL statements. The repository GUI
presents the user with the possibility to graphically build SQL statements which avoids learning
SQL syntax. Currently, the SQL statements that can be built in this way are restricted to queries
on a single database table. No high-level queries are currently implemented.

The repository GUI has a query panel which looks like the figure below:

LTPDA Repositoary GUI

Connection Submit Query Retriova

| L -
Fram . objmeta = .I Whare

[& I I

Select FowEE— 4 | SubMited 1= + | oosozas | aND 3

ob|_type —

nams | o o .

create sUbmitte: < 5 -

wersion L i I | 200840225

ip

hostname

= []

Order by | obl_i 4] | pesc)
analysie - / - /
quantiy
additional_authors
additional_comments
Kaywards
refarence_ids
validated

wdate 1

SELECT ob)_id,submitted experimant_tile, experiment_desc.analysis_dess FROM objmeta WHERE submitted = "2008-02-24" AND
submitted = "2008-02-25" ORDER BY ob] id DESC;

Query:

(Execute query |

Status: connected to ipda_test on 130.75.117.67 as hewitson

In this figure, you see that the user has built a query to select all objects submitted on the 24th
February 2008. The results will contain the object id, the submitted date, the experiment title,
the experiment description, and the analysis description. The results will be sorted in
descending order of the object id.

Executing the query (click the 'Execute query' button) produces the results table shown below.

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/repo_gui_query.htmI[10/08/2009 16:33:58]

Querying the contents of a repository (LTPDA Toolbox)

B0 Query Results
SELECT obj_id,submitted,experiment_title,experiment_desc,analysis_desc FROM objmeta WHERE submitted =
"2008-02-24" AND submitied < "2008-02-25" ORDER BY obj_id DESC;
obj_id submitted experiment_title experiment_desc analysis_desc
1 40 2008-02-24 22:16:44.0 submit timespan this is just a test of the w... just submitting -
T 39 2008-02-24 22:16:43.0 submit time this is just a test of the w... just submitting i
T 38 2008-02-24 22:16:42.0 submit specwin this is just a test of the w... just submitting
4 | a7 20080224 22:16:41.0 submit pzmodel this is just a test of the w... just submitting
5 | 46 2008-02-24 22:16:39.0 submit plist this is just a test of the w... just submitting
T 35 2008-02-24 22:16:38.0 submit miir this is just a test of the w... just submitting
K 34 2008-02-24 22:16:35.0 submit mfir this is just a test of the w... just submitting
T 33 2008-02-24 22:16:32.0 submit ao this is just a test of the w... just submitting
T 32 2008-02-24 21:35:58.0 Repository Test from UTN ... Submitretrieve test # 47... Nothing serious, just playing ...
? 31 2008-02-24 20:41:10.0 A series of ADs A set of AOs which are c... No analysis yet
11 | 0 2008-02-24 20:41:04.0 A series of ADs A sot of AOs which are c... No analysis yet
? 29 2008-02-24 20:40:58.0 A series of ADs A sat of ADs which are c... No analysis yet
13 | 28 2008-02-24 20:40:52.0 A series of ADs A set of AOs which are c... Na analysis yet
T 27 2008-02-24 20:40:47.0 A series of ADs A set of ADs which are c... No analysis yet
15 | 26 2008-02-24 20:40:41.0 A series of ADs A st of ACs which are ¢... No analysis yet LL
? 25 2008-02-24 20:40:12.0 A series of ADs A set of AOs which are c... No analysis yet
? 24 2008-02-24 20:40:06.0 A series of ADs A set of ADs which are c... No analysis yet
? 23 2008-02-24 20:40:00.0 A series of ADs A sat of ADs which are c... No analysis yet
? 22 2008-02-24 20:39:54.0 A series of ADs A set of ADs which are c... No analysis yet
? 21 2008-02-24 20:39:48.0 A series of ADs A sat of ADs which are c... No analysis yet
? 20 2008-02-24 20:39:42.0 A seres of ADs A set of AOs which are c... No analysis yat
? 19 2008-02-24 20:35:48.0 A seres of ADs A set of ADs which are c... No analysis yet
23 | 18 2008-02-24 20:35:43.0 A series of ADs A setof AOs which are c... Na analysis yet
? 17 2008-02-24 20:35:37.0 A series of ADs A set of AOs which are c... No analysis yet
ar 48 MNNRND.94 W96 A A _codoe nf A A cot of A wihich am o Bln anahseie wnt 3
P

As you can see, the query string that is actually executed is presented in the text edit box
above the 'Execute query' button. This query string can be edited to allow for finer control over
the query. This is for users who already have a working knowledge of MySQL SQL syntax.

[#]Submitting objects to a repository Retrieving objects and collections from a repository [#]

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/repo_gui_query.htmI[10/08/2009 16:33:58]

Retrieving objects and collections from a repository (LTPDA Toolbox)

[« [3]

LTPDA Toolbox contents

Retrieving objects and collections from a
repository

Retrieving objects from an LTPDA repository can be done using the retrieve panel shown below:

- LTPDA Repository GUI

Connection Submit Query Retrieve

Retrieve abject |Ds

12

ciz2
20:30
ci3

Prafic hj

’27 Append object type

Import Save

Status: connected to fpda_test on 130.75.117.67 as hewitson

The user must enter the IDs of the objects he/she wishes to retrieve. The IDs can be entered
using standard MATLAB numerical notation. Collections can be retrieved by prefixing the

collection ID with a 'c', for example, 'c12' retrieves collection 12.

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/repo_gui_retrieve.html|[10/08/2009 16:34:07]

Retrieving objects and collections from a repository (LTPDA Toolbox)

LTPDA Repository GUI

Connection Submit Query Retrieve

Retrieve object |IDs

12
45
ci2
20:30
ci3d

Prafix o

’27 Append obiject type

(Import | Save |

Status: connacted to tpda_test on 130.75.117.67 as hewitson

Clicking on the 'Import' button retrieves all objects in the list and places them in the MATLAB
workspace, as shown below:

Mame & Value Min Bytes Class Max

& obj001_ao <1x1 ao> 54862 ao i
& obj002_ao <1x1 ao> 40320 ao

&) obj@d4_ao <1x1 ao> 42666 ao

&) obj@85_ao <1x1 ao> 52398 ao

& obj@20_ao <1x1 ao> 166098 ao

& obj@21_ao <1x1 ao> 166098 ao b
& obj022_ao <1x1 ao> 166098 ao

& obj@23_ao <1x1 ao> 166098 ao

&) obj@24_ao <1x1 ao> 166098 ao

&) obj@25_ao <1x1 ao> 166098 ao

& obj@26_ao <1x1 ao> 166098 ao

& 0bj@27_ao <1x1 ao> 166098 ao

& obj@28_ao <1x1 ao> 166098 ao L
& obj@29_ao <1x1 ao> 166098 ao

&) obj@30_ao <1x1 ao> 166098 ao

objC@12_839_time <1x1 structs 10402 struct

i objC013_040_timespan <1x1 timespan= 18340 timespan -

The objects can be directly saved to disk in XML format by clicking the 'Save' button.
You can select a prefix for the objects by typing in the 'prefix' edit box.

If the 'Append object type' check-box is checked, each object name (or filename) will have the
object type (class) appended.

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/repo_gui_retrieve.html|[10/08/2009 16:34:07]

Retrieving objects and collections from a repository (LTPDA Toolbox)

[®]Querying the contents of a repository Class descriptions

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/repo_gui_retrieve.html|[10/08/2009 16:34:07]

Class descriptions (LTPDA Toolbox)

LTPDA Toolbox

contents

Class descriptions

AOQ class

SSM class

MFIR class

MIIR class

PZMODEL class

PARFRAC class

RATIONAL class

TIMESPAN class

PLIST class

SPECWIN class

TIME class

PZ (POLE/ZERQ) class

MINFO class

HISTORY class

PROVENANCE class

PARAM class

UNIT class

CDATA class

Implements analysis objects in the LTPDA
toolbox

Implements statespace model in the LTPDA
toolbox

Implements finite impulse response filter
objects within LTPDA toolbox

Implements infinite impulse response filter
objects within LTPDA toolbox

Implements pole/zero model objects within
LTPDA toolbox

Implements partial fraction representation of
a transfer function within LTPDA toolbox

Implements rational representation of a
transfer function within LTPDA toolbox

Implements time span objects within LTPDA
toolbox

Implements parameter list objects within
LTPDA toolbox

Implements spectral window objects within
LTPDA toolbox

Implements time objects within LTPDA
toolbox

Implements pole/zero objects within LTPDA
toolbox

Implements m-file info objects within LTPDA
toolbox

Implements history objects within LTPDA
toolbox

Implements provenance objects within
LTPDA toolbox

Implements parameter objects within LTPDA
toolbox

Implements unit objects within LTPDA
toolbox

Implements constant data objects within
LTPDA toolbox

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_main.htmI[10/08/2009 16:34:13]

Class descriptions (LTPDA Toolbox)

FSDATA class Implements frequency-series data objects
within LTPDA toolbox
TSDATA class Implements time-series data objects within
LTPDA toolbox
XYDATA class Implements x-y data objects within LTPDA
toolbox
XYZDATA class Implements x-y-z data objects within LTPDA
toolbox
[#]Retrieving objects and collections from a repository ao Class [#]
©LTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_main.htmI[10/08/2009 16:34:13]

ao Class (LTPDA Toolbox)

LTPDA Toolbox contents [€]

ao Class

Properties Properties of the class
Methods All Methods of the class ordered by category.
Examples Some constructor examples

a Back to Class descriptions

Properties

The LTPDA toolbox restrict access of the properties.
The get access is 'public’ and thus it is possible to get the values with the dot-command
(similar to structures).

For example:
val = obj.prop(2).prop;

The set access is 'protected’ and thus it is only possible to assign a value to a property with a
set-method.

For exam
obj2 = OB 1. setName(my name®) % This command creates a coBy of objl (objl ~= obj2)
obJ setName(my name®); % This command applies to o
Properties Description Defined
in class
data Data object associated with this AO ao
mfile Full text representation of the m-file that created this ao
AO
mfilename The filename of the m-file that created this AO ao
mdlfile Full text representation of the mdl-file that created ao
this AO
mdIfilename The filename of the mdl-file that created this AO ao

procinfo Contains extra processing information not contained ao
in the main result of any method (plist-object).

plotinfo pjist-object which contains the ao
version CVS version string of the constructor ao
hist History object associated with this object Itpda_uoh
description Description of the object ltpda_uoh

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_ao.html[10/08/2009 16:34:19]

ao Class (LTPDA Toolbox)

name

Name of the object

& Back to Top

ltpda_uo

Methods
Arithmetic Operator
Constructor Constructor of this class
Helper Helper methods only for internal usage
Internal Internal methods only for internal usage
Operator Operator methods
Qutput Output methods
Relational Operator Relational operator methods
Signal Processing Signal processing methods
Trigonometry Trigometry methods

a Back to Top
Arithmetic Operator

Methods

minus

mpower

mrdivide

mtimes

plus

Description

MINUS implements subtraction operator for analysis
objects.

MPOWER implements mpower operator for analysis
objects.

MRDIVIDE implements mrdivide operator for analysis
objects.

MTIMES implements mtimes operator for analysis
objects.

PLUS implements addition operator for analysis
objects.

POWER implements power operator for analysis
objects.

RDIVIDE implements division operator for analysis
objects.

TIMES implements multiplication operator for analysis
objects.

Defined
in class

a0

a0

a0

a0

a0

a0

a0

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_ao.html[10/08/2009 16:34:19]

matlab:doc('ao/minus')
matlab:doc('ao/mpower')
matlab:doc('ao/mrdivide')
matlab:doc('ao/mtimes')
matlab:doc('ao/plus')
matlab:doc('ao/power')
matlab:doc('ao/rdivide')
matlab:doc('ao/times')

ao Class (LTPDA Toolbox)

a Back to Top of Section

Constructor

Methods Description

ao AO analysis object class constructor.

rebuild REBUILD rebuilds the input objects using the history.

a Back to Top of Section

Helper
Methods
attachm

attachmdl

(9l
|~

convert

demux

3

5 £

ind

fromProcinfo

>
N
(D
N
(%]

search

Description

ATTACHM attach an m file to the analysis object.

ATTACHMDL attach an mdl file to the analysis
object.

CAT concatenate AOs into a row vector.

CONVERT perform various conversions on the ao.

DEMUX splits the input vector of AOs into a
number of output AOs.

DX Get the data property 'dx'.
DY Get the data property 'dy'.

FIND particular samples that satisfy the input
query and return a new AO.

FROMPROCINFO returns for a given key-name the

value of the procinfo-plist
FS Get the data property 'fs'.
JOIN multiple AOs into a single AO.

LEN overloads the length operator for Analysis
objects. Length of the data samples.

MD5 computes an MD5 checksum from an
analysis objects.

NSECS Get the data property 'nsecs'.

SEARCH selects AOs that match the given name.

Defined
in class

a0

ltpda_uoh

Defined
in class

a0

a0

a0
a0

a0

a0
a0

a0

a0

a0

a0

a0

a0

a0

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_ao.html[10/08/2009 16:34:19]

matlab:doc('ao')
matlab:doc('ltpda_uoh/rebuild')
matlab:doc('ao/attachm')
matlab:doc('ao/attachmdl')
matlab:doc('ao/cat')
matlab:doc('ao/convert')
matlab:doc('ao/demux')
matlab:doc('ao/dx')
matlab:doc('ao/dy')
matlab:doc('ao/find')
matlab:doc('ao/fromProcinfo')
matlab:doc('ao/fs')
matlab:doc('ao/join')
matlab:doc('ao/len')
matlab:doc('ao/md5')
matlab:doc('ao/nsecs')
matlab:doc('ao/search')

ao Class (LTPDA Toolbox)

setDx SETDX sets the 'dx' property of the ao. ao
setDy SETDY sets the 'dy' property of the ao. ao
setFs SETFS sets the 'fs' property of the ao. ao

setPlotinfo SETPLOTINFO sets the 'plotinfo' property of the ao. ao

setTO SETTO sets the 't0' property of the ao. ao
setX SETX sets the 'x' property of the ao. ao
setXY SETXY sets the 'xy' property of the ao. ao
setXunits SETXUNITS sets the 'xunits' property of the ao. ao
setY SETY sets the 'y' property of the ao. ao
setYunits SETYUNITS sets the 'yunits' property of the ao. ao
setZ SETZ sets the 'z' property of the ao. ao

simplifyYunits SIMPLIFYYUNITS simplify the 'yunits' property of ao

the ao.
10 TO Get the data property 't0". ao
timeshift TIMESHIFT for AO/tsdata objects, shifts the time ao
axis such that x(1) = 0.
validate VALIDATE checks that the input Analysis Object is ao
reproducible and valid.
X X Get the data property 'x'. ao
Xunits XUNITS Get the data property 'xunits'. ao
Y Y Get the data property 'y'. ao
yunits YUNITS Get the data property 'yunits'. ao
get GET get a property of a object. ltpda_obj
isprop ISPROP tests if the given field is one of the object Itpda_obj
properties.
created CREATED Returns a time object of the last ltpda_uoh
modification.
creator CREATOR Extract the creator(s) from the history. Itpda_uoh
index INDEX index into a 'ltpda_uoh' object array or ltpda_uoh

matrix. This properly captures the history.

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_ao.html[10/08/2009 16:34:19]

matlab:doc('ao/setDx')
matlab:doc('ao/setDy')
matlab:doc('ao/setFs')
matlab:doc('ao/setPlotinfo')
matlab:doc('ao/setT0')
matlab:doc('ao/setX')
matlab:doc('ao/setXY')
matlab:doc('ao/setXunits')
matlab:doc('ao/setY')
matlab:doc('ao/setYunits')
matlab:doc('ao/setZ')
matlab:doc('ao/simplifyYunits')
matlab:doc('ao/t0')
matlab:doc('ao/timeshift')
matlab:doc('ao/validate')
matlab:doc('ao/x')
matlab:doc('ao/xunits')
matlab:doc('ao/y')
matlab:doc('ao/yunits')
matlab:doc('ltpda_obj/get')
matlab:doc('ltpda_obj/isprop')
matlab:doc('ltpda_uoh/created')
matlab:doc('ltpda_uoh/creator')
matlab:doc('ltpda_uoh/index')

ao Class (LTPDA Toolbox)

setDescription SETDESCRIPTION sets the 'description' property of Itpda_uoh
an Iltpda_uoh object.

setName SETNAME Set the property 'name’. ltpda_uoh

setProperties SETPROPERTIES set different properties of an ltpda_uoh
object.

string STRING writes a command string that can be used Itpda_uoh

to recreate the input object(s).

a Back to Top of Section

Internal
Methods Description Defined
in class
ao2m AO2M converts an analysis object to an ".m' file based ao
on the history.
plot PLOT a simple plot of analysis objects. ao

bsubmit BSUBMIT bsubmits the given collection of objects to an Itpda_uo
LTPDA Repository.

submit SUBMIT submits the given collection of objects to an Itpda_uo
LTPDA Repository.

update UPDATE updates the given object in an LTPDA ltpda_uo
Repository.

a Back to Top of Section
MDCO1

Methods Description Defined
in class

mdcl_cont2act_utn mdcl_cont2act_utn simulate the effect of ao
retarded actuators

mdcl_ifo2acc_fd MDC1_IFO2ACC_FS calculates the external ao
acceleration in the frequency-domain.

mdcl_ifo2acc_fd_utn mdcl_ifo2acc_fd_utn convert ifo data to ao
acceleration

mdcl_ifo2acc_inloop MDC1_IFO2ACC_INLOOP calculates the ao
inloop acceleration in the time-domain.

mdcl_ifo2cont_utn mdcl_ifo2cont_utn simulate the effect of the ao
controller

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_ao.html[10/08/2009 16:34:19]

matlab:doc('ltpda_uoh/setDescription')
matlab:doc('ltpda_uoh/setName')
matlab:doc('ltpda_uoh/setProperties')
matlab:doc('ltpda_uoh/string')
matlab:doc('ao/ao2m')
matlab:doc('ao/plot')
matlab:doc('ltpda_uo/bsubmit')
matlab:doc('ltpda_uo/submit')
matlab:doc('ltpda_uo/update')
matlab:doc('ao/mdc1_cont2act_utn')
matlab:doc('ao/mdc1_ifo2acc_fd')
matlab:doc('ao/mdc1_ifo2acc_fd_utn')
matlab:doc('ao/mdc1_ifo2acc_inloop')
matlab:doc('ao/mdc1_ifo2cont_utn')

ao Class (LTPDA Toolbox)

mdcl_ifo2control MDC1_IFO2CONTROL converts the input ao
time-series to control forces.

mdcl_x2acc MDC1_X2ACC converts the input time-series ao
to acceleration with a time-domain filter

a Back to Top of Section

Operator
Methods Description Defined
in class
abs ABS overloads the Absolute value method for Analysis ao
objects.
angle ANGLE overloads the angle operator for Analysis ao
objects.

complex COMPLEX overloads the complex operator for Analysis ao

objects.

conj CONJ overloads the conjugate operator for Analysis ao
objects.

ctranspose CTRANSPOSE overloads the ' operator for Analysis ao
Objects.

det DET overloads the determinant function for Analysis ao
objects.

diag DIAG overloads the diagonal operator for Analysis ao
Objects.

eig EIG overloads the determinant function for Analysis ao
objects.

exp EXP overloads the exp operator for Analysis objects. ao
Exponential.

ima IMAG overloads the imaginary operator for Analysis ao
objects.

inv INV overloads the inverse function for Analysis ao
Objects.

In LN overloads the log operator for Analysis objects. ao
Natural logarithm.

log LOG overloads the log operator for Analysis objects. ao
Natural logarithm.

log10 LOG10 overloads the log10 operator for Analysis ao

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_ao.html[10/08/2009 16:34:19]

matlab:doc('ao/mdc1_ifo2control')
matlab:doc('ao/mdc1_x2acc')
matlab:doc('ao/abs')
matlab:doc('ao/angle')
matlab:doc('ao/complex')
matlab:doc('ao/conj')
matlab:doc('ao/ctranspose')
matlab:doc('ao/det')
matlab:doc('ao/diag')
matlab:doc('ao/eig')
matlab:doc('ao/exp')
matlab:doc('ao/imag')
matlab:doc('ao/inv')
matlab:doc('ao/ln')
matlab:doc('ao/log')
matlab:doc('ao/log10')

ao Class (LTPDA Toolbox)

objects. Common (base 10) logarithm.

Iscov LSCOV is a wrapper for MATLAB's Iscov function. ao

max MAX computes the maximum value of the data in the ao
AO.

mean MEAN computes the mean value of the data in the AO. ao

median MEDIAN computes the median value of the data in the ao

AO.

min MIN computes the minimum value of the data in the ao
AO.

mode MODE computes the modal value of the data in the AO. ao

norm NORM overloads the norm operator for Analysis ao
Objects.

offset OFFSET adds an offset to the data in the AO. ao

phase PHASE overloads the Itpda_phase operator for Analysis ao
objects.

real REAL overloads the real operator for Analysis objects. ao

scale SCALE scales the data in the AO by the specified factor. ao

sign SIGN overloads the sign operator for Analysis objects.% ao

sort SORT the values in the AO. ao

sqrt SQRT computes the square root of the data in the AO. ao

std STD computes the standard deviation of the data in the ao
AO.

sum SUM computes the sum of the data in the AO. ao

sumjoin SUMJOIN sums time-series signals togther ao

svd SVD overloads the determinant function for Analysis ao
objects.

transpose TRANSPOSE overloads the ."' operator for Analysis ao
Objects.

uminus UMINUS overloads the uminus operator for Analysis ao
objects.

unwra UNWRAP overloads the unwrap operator for Analysis ao
objects.

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_ao.html[10/08/2009 16:34:19]

matlab:doc('ao/lscov')
matlab:doc('ao/max')
matlab:doc('ao/mean')
matlab:doc('ao/median')
matlab:doc('ao/min')
matlab:doc('ao/mode')
matlab:doc('ao/norm')
matlab:doc('ao/offset')
matlab:doc('ao/phase')
matlab:doc('ao/real')
matlab:doc('ao/scale')
matlab:doc('ao/sign')
matlab:doc('ao/sort')
matlab:doc('ao/sqrt')
matlab:doc('ao/std')
matlab:doc('ao/sum')
matlab:doc('ao/sumjoin')
matlab:doc('ao/svd')
matlab:doc('ao/transpose')
matlab:doc('ao/uminus')
matlab:doc('ao/unwrap')

ao Class (LTPDA Toolbox)

var VAR computes the variance of the data in the AO. ao

a Back to Top of Section

Output
Methods Description Defined
in class
char CHAR overloads char() function for analysis objects. ao
display DISPLAY implement terminal display for analysis ao
object.
export EXPORT export an analysis object to a text file. ao

extractm EXTRACTM extracts an m-file from an analysis object ao
and saves it to disk.

extractmdl EXTRACTMDL extracts an mdl file from an analysis ao
object and saves it to disk.

iplot IPLOT provides an intelligent plotting tool for LTPDA. ao
iplotyy IPLOT provides an intelligent plotting tool for LTPDA. ao

report REPORT generates an HTML report about the input ltpda_uoh

objects.
save SAVE overloads save operator for ltpda objects. ltpda_uoh
type TYPE converts the input objects to MATLAB functions. Itpda_uoh

a Back to Top of Section

Relational Operator

Methods Description Defined
in class
ge GE overloads >= operator for analysis objects. ao

Compare the y-axis values.

at GT overloads > operator for analysis objects. ao
Compare the y-axis values.

le LE overloads <= operator for analysis objects. ao
Compare the y-axis values.

It LT overloads < operator for analysis objects. Compare ao
the y-axis values.

eq EQ overloads the == operator for ltpda objects. ltpda_obj

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_ao.html[10/08/2009 16:34:19]

matlab:doc('ao/var')
matlab:doc('ao/char')
matlab:doc('ao/display')
matlab:doc('ao/export')
matlab:doc('ao/extractm')
matlab:doc('ao/extractmdl')
matlab:doc('ao/iplot')
matlab:doc('ao/iplotyy')
matlab:doc('ltpda_uoh/report')
matlab:doc('ltpda_uoh/save')
matlab:doc('ltpda_uoh/type')
matlab:doc('ao/ge')
matlab:doc('ao/gt')
matlab:doc('ao/le')
matlab:doc('ao/lt')
matlab:doc('ltpda_obj/eq')

ao Class (LTPDA Toolbox)

ne NE overloads the ~= operator for Itpda objects. ltpda_obj

a Back to Top of Section

Signal Processing

Methods Description Defined
in class
cohere COHERE estimates the coherence between time- ao

series objects

compute COMPUTE performs the given operations on the ao
input AOs.

consolidate CONSOLIDATE resamples all input AOs onto the ao
same time grid.

conv CONV vector convolution. ao

cov COV estimate covariance of data streams. ao

cpsd CPSD estimates the cross-spectral density ao
between time-series objects

curvefit CURVEFIT fit a curve to data. ao

delay DELAY delays a time-series using various ao
methods.

detrend DETREND detrends the input analysis object using ao
a polynomial of degree N.

dft DFT computes the DFT of the input time-series at ao
the requested frequencies.

diff DIFF differentiates the data in AO. ao

dopplercorr Dopplercorr coorects data for Doppler shift ao

downsample DOWNSAMPLE AOs containing time-series data. ao

dropduplicates DROPDUPLICATES drops all duplicate samples in ao
time-series AOs.

dsmean DSMEAN performs a simple downsampling by ao
taking the mean of every N samples.

evaluateModel EVALUATEMODEL evaluate a curvefit model. ao
fft FFT overloads the fft method for Analysis objects. ao
filter FILTER overrides the filter function for analysis ao

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_ao.html[10/08/2009 16:34:19]

matlab:doc('ltpda_obj/ne')
matlab:doc('ao/cohere')
matlab:doc('ao/compute')
matlab:doc('ao/consolidate')
matlab:doc('ao/conv')
matlab:doc('ao/cov')
matlab:doc('ao/cpsd')
matlab:doc('ao/curvefit')
matlab:doc('ao/delay')
matlab:doc('ao/detrend')
matlab:doc('ao/dft')
matlab:doc('ao/diff')
matlab:doc('ao/dopplercorr')
matlab:doc('ao/downsample')
matlab:doc('ao/dropduplicates')
matlab:doc('ao/dsmean')
matlab:doc('ao/evaluateModel')
matlab:doc('ao/fft')
matlab:doc('ao/filter')

ao Class (LTPDA Toolbox)

objects.

filtfilt FILTFILT overrides the filtfilt function for analysis ao
objects.

firwhiten FIRWHITEN whitens the input time-series by ao

building an FIR whitening filter.

fixfs FIXFS resamples the input time-series to have a ao
fixed sample rate.

fngen FNGEN creates an arbitrarily long time-series ao
based on the input PSD.

gapfilling GAPFILLING fills possible gaps in data. ao

gapfillingoptim GAPFILLINGOPTIM fills possible gaps in data. ao

heterodyne HETERODYNE heterodynes time-series. ao

hist HIST overloads the histogram function (hist) of ao
MATLAB for Analysis Objects.

ifft IFFT overloads the ifft operator for Analysis ao
objects.

interp INTERP interpolate the values in the input AO(s) at ao
new values.

interpmissing INTERPMISSING interpolate missing samplesina ao
time-series.

lcohere LCOHERE implement coherence estimation on a log ao
frequency axis.

Icpsd LCPSD implement cross—-power-spectral density ao
estimation on a log frequency axis.

lincom LINCOM ao

linedetect LINEDETECT find spectral lines in the ao/fsdata ao
objects.

lisovfit LISOVFIT uses LISO to fit a pole/zero model to the ao

input frequency-series.

Ipsd LPSD implements the LPSD algorithm for analysis ao
objects.
Itfe LTFE implements transfer function estimation ao

computed on a log frequency axis.

noisegenlD NOISEGEN1D generates colored noise from withe ao

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_ao.html[10/08/2009 16:34:19]

matlab:doc('ao/filtfilt')
matlab:doc('ao/firwhiten')
matlab:doc('ao/fixfs')
matlab:doc('ao/fngen')
matlab:doc('ao/gapfilling')
matlab:doc('ao/gapfillingoptim')
matlab:doc('ao/heterodyne')
matlab:doc('ao/hist')
matlab:doc('ao/ifft')
matlab:doc('ao/interp')
matlab:doc('ao/interpmissing')
matlab:doc('ao/lcohere')
matlab:doc('ao/lcpsd')
matlab:doc('ao/lincom')
matlab:doc('ao/linedetect')
matlab:doc('ao/lisovfit')
matlab:doc('ao/lpsd')
matlab:doc('ao/ltfe')
matlab:doc('ao/noisegen1D')

ao Class (LTPDA Toolbox)

noise.

noisegen2D NOISEGEN2D generates cross correleted colored ao
noise from withe noise.

polyfit POLYFIT overloads polyfit() function of MATLAB for ao
Analysis Objects.

psd PSD makes power spectral density estimates of the ao
time-series objects

psdconf PSDCONF Calculates confidence levels and ao
variance for psd

pwelch PWELCH makes power spectral density estimates ao
of the time-series objects

resample RESAMPLE overloads resample function for AOs. ao

rms RMS Calculate RMS deviation from spectrum ao

sDomainFit sDomainFit performs a fitting loop to identify ao

model order and

select SELECT select particular samples from the input ao
AOs and return new AOs with only those samples.

smoother SMOOTHER smooths a given series of data points ao
using the specified method.

spectrogram SPECTROGRAM computes a spectrogram of the ao
given ao/tsdata.

spikecleaning spikecleaning detects and corrects possible spikes ao
in analysis objects

split SPLIT split an analysis object into the specified ao
segments.

straightlineFit STRAIGHTLINEFIT fits a straight line to the given ao

data series
tfe TFE estimates transfer function between time- ao
series objects.
upsample UPSAMPLE overloads upsample function for AOs. ao
whiten1D WHITEN1D whitens the input time-series. ao
whiten2D WHITEN2D whiten the noise for two cross ao
correlated time series.
Xcorr XCORR makes cross-correlation estimates of the ao

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_ao.html[10/08/2009 16:34:19]

matlab:doc('ao/noisegen2D')
matlab:doc('ao/polyfit')
matlab:doc('ao/psd')
matlab:doc('ao/psdconf')
matlab:doc('ao/pwelch')
matlab:doc('ao/resample')
matlab:doc('ao/rms')
matlab:doc('ao/sDomainFit')
matlab:doc('ao/select')
matlab:doc('ao/smoother')
matlab:doc('ao/spectrogram')
matlab:doc('ao/spikecleaning')
matlab:doc('ao/split')
matlab:doc('ao/straightLineFit')
matlab:doc('ao/tfe')
matlab:doc('ao/upsample')
matlab:doc('ao/whiten1D')
matlab:doc('ao/whiten2D')
matlab:doc('ao/xcorr')

ao Class (LTPDA Toolbox)

time-series

zDomainFit zDomainFit performs a fitting loop to identify
model order and

zeropad ZEROPAD zero pads the input data series.

a Back to Top of Section
Trigonometry

Methods Description

acos ACOS overloads the acos method for Analysis objects.
asin ASIN overloads the asin method for Analysis objects.
atan ATAN overloads the atan method for Analysis objects.
atan?2 ATAN?2 overloads the atan2 operator for Analysis

objects. Four quadrant inverse tangent.

cos COS overloads the cos operator for Analysis objects.
Cosine of argument in radians.

sin SIN overloads the sin method for Analysis objects.

tan TAN overloads the tan method for Analysis objects.

a Back to Top of Section

[#]Class descriptions

OLTP Team

a0

a0

Defined
in class

a0
a0
a0

a0

a0

a0

a0

ssm Class [#]

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_ao.html[10/08/2009 16:34:19]

matlab:doc('ao/zDomainFit')
matlab:doc('ao/zeropad')
matlab:doc('ao/acos')
matlab:doc('ao/asin')
matlab:doc('ao/atan')
matlab:doc('ao/atan2')
matlab:doc('ao/cos')
matlab:doc('ao/sin')
matlab:doc('ao/tan')

ssm Class (LTPDA Toolbox)

LTPDA Toolbox contents

ssm Class

Properties
Methods

Examples

Properties of the class

All Methods of the class ordered by category.

Some constructor examples

a Back to Class descriptions

Properties

The LTPDA toolbox restrict access of the properties.

The get access is 'public’ and thus it is possible to get the values with the dot-command

(similar to structures).

For example:
val = obj.prop(2).prop;

The set access is 'protected’ and thus it is only possible to assign a value to a property with a

set-method.
For exam
obj2 = OB 1. setName(my name®) % This command creates a co
obJ setName(my name-"); % This command applies to o
Properties Description Defined
amats A matrix representing a difference/differential ssm
term in the state equation, block stored in a cell
array
mmats M matrix representing an inertial coefficient matrix ssm
in the state equation, block stored in a cell array
bmats B matrix representing an input coefficient matrix ssm
in the state equation, block stored in a cell array
cmats C matrix representing the state projection in the ssm
observation equation, block stored in a cell array
dmats D matrix representing the direct feed through ssm
term in the observation equation, block stored in a
cell array
isnumerical Thjs binary tells whether the system has numerical ssm
content only, or symbolic as well
timestep Timestep of the difference equation. Zero means ssm

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_ssm.html|[10/08/2009 16:34:26]

in class

the representation is time continuous and A
defines a differential equation.

BY of objl (objl ~= obj2)

ssm Class (LTPDA Toolbox)

nonlin ssm

Inputnames Names corresponding to each input column-block ssm
in the B/D matrices. Cell array of strings

inputvarnames Names corresponding to each input column in ssm
each column-block of the B/D matrices. Cell array
of cell array of Strings

Inputsizes Width corresponding to each input column-block ssm
in the B/D matrices. It is a double vector

inputconn ssm
Ninputs Number of input column-blocks, it is a double ssm
ssnames Names corresponding to each input state-block in ssm

the A/B/C matrices. Cell array of strings

SSEIEES Names corresponding to each variable in each ssm
input state-block in the A/B/C matrices. Cell array
of cell array of Strings

sssizes Size corresponding to each input state-block in ssm
the A/B/C matrices. It is a double vector

ssconn ssSm

Nss Number of state-blocks, it is a double ssm

outputnames Names corresponding to each output row-block in ssm
the C/D matrices. Cell array of strings

outputvarnames Names corresponding to each output variable in ssm
each row-block in the C/D matrices. Cell array of
cell array of Strings

outputsizes Width corresponding to each output row-block in ssm
the C/D matrix. It is a double vector

outputconn ssm

Noutputs Number of output row-blocks, it is a double ssm

paramnames Names of each parameter, stored as a string ina ssm
cell array

paramvalues Nominal value of each parameter, stored as a ssm

double vector

paramsigmas Expected variance of each parameter, stored asa ssm
double vector

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_ssm.html|[10/08/2009 16:34:26]

ssm Class (LTPDA Toolbox)

Nparams Total number of parameters ssm
version CVS version string of the constructor ssm

hist History object associated with this object Itpda_uoh
description Description of the object Itpda_uoh
name Name of the object Itpda_uo

a Back to Top

Methods
Constructor Constructor of this class
Helper Helper methods only for internal usage
Internal Internal methods only for internal usage
Qutput Output methods
Relational Operator Relational operator methods

a Back to Top
Constructor

Methods Description Defined
in class

rebuild REBUILD rebuilds the input objects using the history. Itpda_uoh

Ss SSM statespace model class constructor. ssm

& Back to Top of Section

Helper
Methods Description Defined
in class

get GET get a property of a object. ltpda_obj

isprop ISPROP tests if the given field is one of the object ltpda_obj
properties.

created CREATED Returns a time object of the last ltpda_uoh
modification.

creator CREATOR Extract the creator(s) from the history. Itpda_uoh

index INDEX index into a 'ltpda_uoh' object array or ltpda_uoh

matrix. This properly captures the history.

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_ssm.html|[10/08/2009 16:34:26]

matlab:doc('ltpda_uoh/rebuild')
matlab:doc('ssm')
matlab:doc('ltpda_obj/get')
matlab:doc('ltpda_obj/isprop')
matlab:doc('ltpda_uoh/created')
matlab:doc('ltpda_uoh/creator')
matlab:doc('ltpda_uoh/index')

ssm Class (LTPDA Toolbox)

setDescription SETDESCRIPTION sets the 'description' property of Itpda_uoh

setName

an ltpda_uoh object.

SETNAME Set the property 'name’.

setProperties SETPROPERTIES set different properties of an

string

findParams

object.

STRING writes a command string that can be used
to recreate the input object(s).

FINDPARAMS returns parameter names matching
the given pattern.

a Back to Top of Section

Internal

Methods

bsubmit

submit

update

Description

ltpda_uoh

ltpda_uoh

ltpda_uoh

ssm

Defined
in class

BSUBMIT bsubmits the given collection of objects to an Itpda_uo

LTPDA Repository.

SUBMIT submits the given collection of objects to an
LTPDA Repository.

UPDATE updates the given object in an LTPDA
Repository.

a Back to Top of Section

Output

Methods

report

L
QD
<
(D

E |

char
display
dotview

isstable

Description

REPORT generates an HTML report about the input
objects.

SAVE overloads save operator for ltpda objects.

TYPE converts the input objects to MATLAB functions.
CHAR convert a ssm object into a string.

DISPLAY display ssm object.

DOTVIEW view an ssm object via the DOT interpreter.

tells if ssm is numerically stable

ltpda_uo

ltpda_uo

Defined
in class

ltpda_uoh
ltpda_uoh
ltpda_uoh
ssm
ssm
ssm

ssm

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_ssm.html|[10/08/2009 16:34:26]

matlab:doc('ltpda_uoh/setDescription')
matlab:doc('ltpda_uoh/setName')
matlab:doc('ltpda_uoh/setProperties')
matlab:doc('ltpda_uoh/string')
matlab:doc('ssm/findParams')
matlab:doc('ltpda_uo/bsubmit')
matlab:doc('ltpda_uo/submit')
matlab:doc('ltpda_uo/update')
matlab:doc('ltpda_uoh/report')
matlab:doc('ltpda_uoh/save')
matlab:doc('ltpda_uoh/type')
matlab:doc('ssm/char')
matlab:doc('ssm/display')
matlab:doc('ssm/dotview')
matlab:doc('ssm/isstable')

ssm Class (LTPDA Toolbox)
a Back to Top of Section

Relational Operator

Methods Description Defined
in class

eq EQ overloads the == operator for Itpda objects. ltpda_obj

ne NE overloads the ~= operator for Itpda objects. ltpda_obj

a Back to Top of Section

Statespace
Methods Description Defined
in class

assemble assembles embedded subsytems, with exogenous ssm
inputs

bode BODE makes a bode plot from the given inputs to ssm
outputs.

copy COPY Make copy of ssm objects depending of the ssm
second input

double Convert a statespace model object to double ssm

arrays for giveni/o

getParamValues GETPARAMVALUES returns parameter values for ssm
the given names.

kalman kalman applies Kalman filtering to a discrete ssm ssm
with given i/o

minreal minreal gives a minimal realization of a ssm ssm
object by deleting unreached states

modifparams modifparams enables to modifyy and substitute ssm
parameters

modiftimestep modiftime modifies the timestep of a ssm object ssm

modify modify allows to exectue a string to modify a ssm ssm
object

reduce reduce enables to do model simplification ssm

reduce_model REDUCE_MODEL enables to do model ssm
simplification

resp resp gives the timewise impulse response of a ssm
ssm

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_ssm.html|[10/08/2009 16:34:26]

matlab:doc('ltpda_obj/eq')
matlab:doc('ltpda_obj/ne')
matlab:doc('ssm/assemble')
matlab:doc('ssm/bode')
matlab:doc('ssm/copy')
matlab:doc('ssm/double')
matlab:doc('ssm/getParamValues')
matlab:doc('ssm/kalman')
matlab:doc('ssm/minreal')
matlab:doc('ssm/modifparams')
matlab:doc('ssm/modiftimestep')
matlab:doc('ssm/modify')
matlab:doc('ssm/reduce')
matlab:doc('ssm/reduce_model')
matlab:doc('ssm/resp')

ssm Class (LTPDA Toolbox)

setparams SETPARAMS enables to set parameters' value ssm

simulate simulate simulates a discrete ssm with given ssm
inputs

simulate? simulate2 is the Old and slower version of ssm
simulate

sminreal minreal gives a minimal realization of a ssm ssm

object by deleting unreached states

ssm2dot SSM2DOT converts a statespace model object a ssm
DOT file.
ssm2iirpz ssmz2iirpz converts a statespace model objectto ssm

an miir or a pzmodel

ssm2miir ssm2miir converts a statespace model objecttoa ssm
miir object
ssm2pzmodel ssm2pzmodel converts a time-continuous ssm

statespace model object to a pzmodel

ssm2rational ssm2rational converts a statespace model object ssm
to a rational frac. object

ssm2ss SSM2SS converts a statespace model objecttoa ssm
MATLAB statespace object.

subsparams subsparams enables to substitute symbollic ssm
patameters

a Back to Top of Section

[#]ao Class mfir Class [#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_ssm.html|[10/08/2009 16:34:26]

matlab:doc('ssm/setparams')
matlab:doc('ssm/simulate')
matlab:doc('ssm/simulate2')
matlab:doc('ssm/sminreal')
matlab:doc('ssm/ssm2dot')
matlab:doc('ssm/ssm2iirpz')
matlab:doc('ssm/ssm2miir')
matlab:doc('ssm/ssm2pzmodel')
matlab:doc('ssm/ssm2rational')
matlab:doc('ssm/ssm2ss')
matlab:doc('ssm/subsparams')

mfir Class (LTPDA

LTPDA Too

Toolbox)

Ibox contents

mfir Class

Properties
Methods

Examples

Properties of the class

All Methods of the class ordered by category.

Some constructor examples

a Back to Class descriptions

Properties

The LTPDA toolbox restrict access of the properties.
The get access is 'public’ and thus it is possible to get the values with the dot-command

(similar to s

tructures).

For example:
val = obj.prop(2).prop;

The set access is 'protected’ and thus it is only possible to assign a value to a property with a
set-method.

For exam
obj2 = o
obJ setName(my name-®);

Properties
ad

version
ntaps

fs

infile

histout
iunits
ounits

hist
description

name

Description

CVS version string of the constructor
Number of coefficients in the filter
Frequency of the filter

Filename which builds the filter

Set of numerator coefficients

Output history values to filter

Input unit of a transfer function

Output unit of a transfer function
History object associated with this object
Description of the object

Name of the object

B 1. setName(my name®) % This command creates a co
% This command applies to o

By of objl (objl ~= obj2)

Defined
in class

mfir

mfir

mfir
ltpda_filter
ltpda_filter
ltpda_filter
Itpda_filter
ltpda_tf
ltpda_tf
ltpda_uoh
ltpda_uoh

ltpda_uo

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_mfir.html[10/08/2009 16:34:32]

mfir Class (LTPDA Toolbox)

a Back to Top

Methods
Constructor Constructor of this class
Helper Helper methods only for internal usage
Internal Internal methods only for internal usage
Qutput Output methods
Relational Operator Relational operator methods
Signal Processing Signal processing methods

& Back to Top

Constructor
Methods Description Defined
in class

rebuild REBUILD rebuilds the input objects using the history. Itpda_uoh

mfir MFIR FIR filter object class constructor. mfir

a Back to Top of Section

Helper

Methods Description Defined

in class

get GET get a property of a object. ltpda_obj

isprop ISPROP tests if the given field is one of the object Itpda_obj
properties.

setlunits SETIUNITS sets the 'iunits' property of the ao. ltpda_tf

setQunits SETOUNITS sets the 'ounits' property of the ao. ltpda_tf

created CREATED Returns a time object of the last ltpda_uoh
modification.

creator CREATOR Extract the creator(s) from the history. Itpda_uoh

index INDEX index into a 'ltpda_uoh' object array or ltpda_uoh
matrix. This properly captures the history.

setDescription SETDESCRIPTION sets the 'description' property of ltpda_uoh

an ltpda_uoh object.

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_mfir.html[10/08/2009 16:34:32]

matlab:doc('ltpda_uoh/rebuild')
matlab:doc('mfir')
matlab:doc('ltpda_obj/get')
matlab:doc('ltpda_obj/isprop')
matlab:doc('ltpda_tf/setIunits')
matlab:doc('ltpda_tf/setOunits')
matlab:doc('ltpda_uoh/created')
matlab:doc('ltpda_uoh/creator')
matlab:doc('ltpda_uoh/index')
matlab:doc('ltpda_uoh/setDescription')

mfir Class (LTPDA Toolbox)

setName SETNAME Set the property 'name’. ltpda_uoh

setProperties SETPROPERTIES set different properties of an ltpda_uoh
object.

string STRING writes a command string that can be used ltpda_uoh

to recreate the input object(s).

redesign REDESIGN redesign the input filter to work for the mfir
given sample rate.

a Back to Top of Section

Internal
Methods Description Defined

in class
setHistout SETHISTOUT Set the property 'histout' ltpda_filter

bsubmit BSUBMIT bsubmits the given collection of objects to Itpda_uo
an LTPDA Repository.

submit SUBMIT submits the given collection of objects to an Itpda_uo
LTPDA Repository.

update UPDATE updates the given object in an LTPDA ltpda_uo
Repository.

a Back to Top of Section

Output
Methods Description Defined
in class

report REPORT generates an HTML report about the input ltpda_uoh
objects.

save SAVE overloads save operator for ltpda objects. ltpda_uoh

type TYPE converts the input objects to MATLAB functions. Itpda_uoh

char CHAR convert a mfir object into a string. mfir

display DISPLAY overloads display functionality for mfir mfir
objects.

a Back to Top of Section

Relational Operator

Methods Description Defined

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_mfir.html[10/08/2009 16:34:32]

matlab:doc('ltpda_uoh/setName')
matlab:doc('ltpda_uoh/setProperties')
matlab:doc('ltpda_uoh/string')
matlab:doc('mfir/redesign')
matlab:doc('ltpda_filter/setHistout')
matlab:doc('ltpda_uo/bsubmit')
matlab:doc('ltpda_uo/submit')
matlab:doc('ltpda_uo/update')
matlab:doc('ltpda_uoh/report')
matlab:doc('ltpda_uoh/save')
matlab:doc('ltpda_uoh/type')
matlab:doc('mfir/char')
matlab:doc('mfir/display')

mfir Class (LTPDA Toolbox)

in class

eq EQ overloads the == operator for ltpda objects. ltpda_obj
ne NE overloads the ~= operator for Itpda objects. ltpda_obj
a Back to Top of Section
Signal Processing
Methods Description Defined

in class
resp RESP Make a frequency response of the filter. Itpda_filter
a Back to Top of Section
[®]ssm Class miir Class [#]

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_mfir.html[10/08/2009 16:34:32]

matlab:doc('ltpda_obj/eq')
matlab:doc('ltpda_obj/ne')
matlab:doc('ltpda_filter/resp')

miir Class (LTPDA

LTPDA Too

Toolbox)

Ibox contents

miir Class

Properties
Methods

Examples

Properties of the class

All Methods of the class ordered by category.

Some constructor examples

a Back to Class descriptions

Properties

The LTPDA toolbox restrict access of the properties.
The get access is 'public’ and thus it is possible to get the values with the dot-command

(similar to s

tructures).

For example:
val = obj.prop(2).prop;

The set access is 'protected’ and thus it is only possible to assign a value to a property with a
set-method.

For exam
obj2 = o
obJ setName(my name-®);

Properties

b
histin
version
ntaps
s

infile

histout
iunits
ounits
hist

description

Description

Set of numerator coefficients

Input history values to filter

CVS version string of the constructor
Number of coefficients in the filter
Frequency of the filter

Filename which builds the filter

Set of numerator coefficients

Output history values to filter

Input unit of a transfer function
Output unit of a transfer function
History object associated with this object

Description of the object

B 1. setName(my name®) % This command creates a co
% This command applies to o

By of objl (objl ~= obj2)

Defined
in class

miir

miir

miir

miir
ltpda_filter
ltpda_filter
Itpda_filter
ltpda_filter
ltpda_tf
ltpda_tf
ltpda_uoh

ltpda_uoh

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_miir.html[10/08/2009 16:34:38]

miir Class (LTPDA Toolbox)

fEtis Name of the object ltpda_uo
a Back to Top
Methods
Constructor Constructor of this class
Helper Helper methods only for internal usage
Internal Internal methods only for internal usage
Qutput Output methods
Relational Operator Relational operator methods
Signal Processing Signal processing methods
a Back to Top
Constructor
Methods Description Defined
in class
rebuild REBUILD rebuilds the input objects using the history. Itpda_uoh
miir MIIR IIR filter object class constructor. miir
a Back to Top of Section
Helper
Methods Description Defined
in class
get GET get a property of a object. ltpda_obj
isprop ISPROP tests if the given field is one of the object Itpda_obj
properties.
setlunits SETIUNITS sets the 'iunits' property of the ao. ltpda_tf
setQunits SETOUNITS sets the 'ounits' property of the ao. ltpda_tf
created CREATED Returns a time object of the last ltpda_uoh
modification.
creator CREATOR Extract the creator(s) from the history. Itpda_uoh
index INDEX index into a 'ltpda_uoh' object array or ltpda_uoh

matrix. This properly captures the history.

setDescription SETDESCRIPTION sets the 'description' property of ltpda_uoh

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_miir.html[10/08/2009 16:34:38]

matlab:doc('ltpda_uoh/rebuild')
matlab:doc('miir')
matlab:doc('ltpda_obj/get')
matlab:doc('ltpda_obj/isprop')
matlab:doc('ltpda_tf/setIunits')
matlab:doc('ltpda_tf/setOunits')
matlab:doc('ltpda_uoh/created')
matlab:doc('ltpda_uoh/creator')
matlab:doc('ltpda_uoh/index')
matlab:doc('ltpda_uoh/setDescription')

miir Class (LTPDA Toolbox)

an ltpda_uoh object.

setName SETNAME Set the property 'name’. ltpda_uoh

setProperties SETPROPERTIES set different properties of an ltpda_uoh
object.

string STRING writes a command string that can be used Iltpda_uoh

to recreate the input object(s).

redesign REDESIGN redesign the input filter to work for the miir
given sample rate.

a Back to Top of Section

Internal

Methods Description Defined
in class

setHistout SETHISTOUT Set the property 'histout' ltpda_filter

bsubmit BSUBMIT bsubmits the given collection of objects to Itpda_uo
an LTPDA Repository.

submit SUBMIT submits the given collection of objects to an Itpda_uo
LTPDA Repository.

update UPDATE updates the given object in an LTPDA ltpda_uo
Repository.
setHistin SETHISTIN Set the property 'histin' miir

a Back to Top of Section

Output
Methods Description Defined
in class

report REPORT generates an HTML report about the input ltpda_uoh
objects.

save SAVE overloads save operator for ltpda objects. ltpda_uoh

type TYPE converts the input objects to MATLAB functions. Itpda_uoh

char CHAR convert a miir object into a string. miir

display DISPLAY overloads display functionality for miir miir
objects.

a Back to Top of Section

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_miir.html[10/08/2009 16:34:38]

matlab:doc('ltpda_uoh/setName')
matlab:doc('ltpda_uoh/setProperties')
matlab:doc('ltpda_uoh/string')
matlab:doc('miir/redesign')
matlab:doc('ltpda_filter/setHistout')
matlab:doc('ltpda_uo/bsubmit')
matlab:doc('ltpda_uo/submit')
matlab:doc('ltpda_uo/update')
matlab:doc('miir/setHistin')
matlab:doc('ltpda_uoh/report')
matlab:doc('ltpda_uoh/save')
matlab:doc('ltpda_uoh/type')
matlab:doc('miir/char')
matlab:doc('miir/display')

miir Class (LTPDA Toolbox)

Relational Operator

Methods Description Defined
in class

eq EQ overloads the == operator for Itpda objects. ltpda_obj

ne NE overloads the ~= operator for Itpda objects. ltpda_obj

a Back to Top of Section

Signal Processing

Methods Description Defined
in class
resp RESP Make a frequency response of the filter. ltpda_filter

a Back to Top of Section

[€] mfir Class pzmodel Class [#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_miir.html[10/08/2009 16:34:38]

matlab:doc('ltpda_obj/eq')
matlab:doc('ltpda_obj/ne')
matlab:doc('ltpda_filter/resp')

pzmodel Class (LTPDA Toolbox)

LTPDA Too

Ibox contents [«]

pzmodel Class

Properties
Methods

Examples

Properties of the class
All Methods of the class ordered by category.

Some constructor examples

a Back to Class descriptions

Properties

The LTPDA toolbox restrict access of the properties.
The get access is 'public’ and thus it is possible to get the values with the dot-command

(similar to s

tructures).

For example:
val = obj.prop(2).prop;

The set access is 'protected’ and thus it is only possible to assign a value to a property with a

set-method.

For examB

obj2 = o 1. setName(my name®) % This command creates a coBy of objl (objl ~= obj2)

obJ setName(my name-"); % This command applies to o
Properties Description Defined

in class

gain Gain of the model pzmodel
poles Vector of poles (pz-objects) pzmodel
2N Vector of zeros (pz-objects) pzmodel
delay Delay of the pole/zero Model pzmodel
version CVS version string of the constructor pzmodel
funits Input unit of a transfer function ltpda_tf
ounits Output unit of a transfer function ltpda_tf
hist History object associated with this object ltpda_uoh
description Description of the object ltpda_uoh
name Name of the object ltpda_uo

a Back to Top

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_pzmodel.htmI[10/08/2009 16:34:44]

pzmodel Class (LTPDA Toolbox)

Methods
Constructor Constructor of this class
Helper Helper methods only for internal usage
Internal Internal methods only for internal usage
Operator Operator methods
Qutput Output methods
Relational Operator Relational operator methods
Signal Processing Signal processing methods

a Back to Top
Constructor

Methods Description Defined
in class
rebuild REBUILD rebuilds the input objects using the history. Itpda_uoh

pzmodel PZMODEL constructor for pzmodel class. pzmodel

a Back to Top of Section

Helper
Methods Description Defined
in class

get GET get a property of a object. ltpda_obj

isprop ISPROP tests if the given field is one of the object Itpda_obj
properties.

setlunits SETIUNITS sets the 'iunits' property of the ao. ltpda_tf

setOunits SETOUNITS sets the 'ounits' property of the ao. ltpda_tf

created CREATED Returns a time object of the last ltpda_uoh
modification.

creator CREATOR Extract the creator(s) from the history. Itpda_uoh

index INDEX index into a 'ltpda_uoh' object array or ltpda_uoh

matrix. This properly captures the history.

setDescription SETDESCRIPTION sets the 'description' property of Itpda_uoh
an Itpda_uoh object.

setName SETNAME Set the property 'name’. ltpda_uoh

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_pzmodel.htmI[10/08/2009 16:34:44]

matlab:doc('ltpda_uoh/rebuild')
matlab:doc('pzmodel')
matlab:doc('ltpda_obj/get')
matlab:doc('ltpda_obj/isprop')
matlab:doc('ltpda_tf/setIunits')
matlab:doc('ltpda_tf/setOunits')
matlab:doc('ltpda_uoh/created')
matlab:doc('ltpda_uoh/creator')
matlab:doc('ltpda_uoh/index')
matlab:doc('ltpda_uoh/setDescription')
matlab:doc('ltpda_uoh/setName')

pzmodel Class (LTPDA Toolbox)

setProperties SETPROPERTIES set different properties of an ltpda_uoh
object.

string STRING writes a command string that can be used Itpda_uoh
to recreate the input object(s).

setDelay SETDELAY sets the 'delay' property of a pole/zero pzmodel
model.

a Back to Top of Section

Internal
Methods Description Defined
in class

bsubmit BSUBMIT bsubmits the given collection of objects to Itpda_uo
an LTPDA Repository.

submit SUBMIT submits the given collection of objects to an Itpda_uo
LTPDA Repository.

update UPDATE updates the given object in an LTPDA ltpda_uo

Repository.

getlowerFreqg GETLOWERFREQ gets the frequency of the lowest pzmodel
pole or zero in the model.

getupperFreqg GETUPPERFREQ gets the frequency of the highest pzmodel
pole or zero in the model.

respCore RESPCORE returns the complex response of one pzmodel
pzmodel object.

a Back to Top of Section

Operator
Methods Description Defined
in class
tomfir TOMEFIR approximates a pole/zero model with an FIR pzmodel
filter.
tomiir TOMIIR converts a pzmodel to an IIR filter using a pzmodel
bilinear transform.
a Back to Top of Section
Output
Methods Description Defined
in class

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_pzmodel.htmI[10/08/2009 16:34:44]

matlab:doc('ltpda_uoh/setProperties')
matlab:doc('ltpda_uoh/string')
matlab:doc('pzmodel/setDelay')
matlab:doc('ltpda_uo/bsubmit')
matlab:doc('ltpda_uo/submit')
matlab:doc('ltpda_uo/update')
matlab:doc('pzmodel/getlowerFreq')
matlab:doc('pzmodel/getupperFreq')
matlab:doc('pzmodel/respCore')
matlab:doc('pzmodel/tomfir')
matlab:doc('pzmodel/tomiir')

report

pzmodel Class (LTPDA Toolbox)

a Back to Top of Section

Relational Operator

Methods

eq

ne

a Back to Top of Section

Signal Processing

Methods

resp

fngen

mrdivide

mtimes

rdivide

simplify

REPORT generates an HTML report about the input ltpda_uoh
objects.
SAVE overloads save operator for Itpda objects. ltpda_uoh
TYPE converts the input objects to MATLAB functions. Itpda_uoh
CHAR convert a pzmodel object into a string. pzmodel
DISPLAY overloads display functionality for pzmodel pzmodel
objects.
Description Defined
in class
EQ overloads the == operator for Itpda objects. ltpda_obj
NE overloads the ~= operator for Itpda objects. ltpda_obj
Description Defined
in class
RESP returns the complex response of a transfer ltpda_tf

function as an Analysis Object.

FNGEN creates an arbitrarily long time-series based on pzmodel
the input pzmodel.

MRDIVIDE overloads the division operator for pzmodel
pzmodels.
MTIMES overloads the multiplication operator for pzmodel

pzmodels.

RDIVIDE overloads the division operator for pzmodels. pzmodel

SIMPLIFY simplifies pzmodels by cancelling like poles pzmodel
with like zeros.
TIMES overloads the multiplication operator for pzmodel

pzmodels.

a Back to Top of Section

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_pzmodel.htmI[10/08/2009 16:34:44]

matlab:doc('ltpda_uoh/report')
matlab:doc('ltpda_uoh/save')
matlab:doc('ltpda_uoh/type')
matlab:doc('pzmodel/char')
matlab:doc('pzmodel/display')
matlab:doc('ltpda_obj/eq')
matlab:doc('ltpda_obj/ne')
matlab:doc('ltpda_tf/resp')
matlab:doc('pzmodel/fngen')
matlab:doc('pzmodel/mrdivide')
matlab:doc('pzmodel/mtimes')
matlab:doc('pzmodel/rdivide')
matlab:doc('pzmodel/simplify')
matlab:doc('pzmodel/times')

pzmodel Class (LTPDA Toolbox)

[€] miir Class parfrac Class [#]

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_pzmodel.htmI[10/08/2009 16:34:44]

parfrac Class (LTPDA Toolbox)

LTPDA Toolbox contents [€]

parfrac Class

Properties Properties of the class
Methods All Methods of the class ordered by category.
Examples Some constructor examples

a Back to Class descriptions

Properties

The LTPDA toolbox restrict access of the properties.
The get access is 'public’ and thus it is possible to get the values with the dot-command
(similar to structures).

For example:
val = obj.prop(2).prop;

The set access is 'protected’ and thus it is only possible to assign a value to a property with a
set-method.

For exam

obj2 = OB 1. setName(my name®) % This command creates a coBy of objl (objl ~= obj2)

obJ setName(my name®); % This command applies to o
Properties Description Defined

in class
= Residuals of the partial fraction representation parfrac
poles poles (real or complex numbers) of the partial parfrac
fraction representation

pmul parfrac
dir Direct terms of the partial fraction representation parfrac
version CVS version string of the constructor parfrac
funits Input unit of a transfer function ltpda_tf
ounits Output unit of a transfer function ltpda_tf
hist History object associated with this object ltpda_uoh
description Description of the object ltpda_uoh
name Name of the object ltpda_uo

& Back to Top

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_parfrac.htmlI[10/08/2009 16:34:50]

parfrac Class (LTPDA Toolbox)

Methods
Constructor Constructor of this class
Helper Helper methods only for internal usage
Internal Internal methods only for internal usage
Qutput Output methods
Relational Operator Relational operator methods
Signal Processing Signal processing methods

a Back to Top
Constructor

Methods Description Defined
in class

rebuild REBUILD rebuilds the input objects using the history. Itpda_uoh

parfrac PARFRAC partial fraction representation of a transfer parfrac
function.

& Back to Top of Section

Helper
Methods Description Defined
in class

get GET get a property of a object. ltpda_obj

isprop ISPROP tests if the given field is one of the object ltpda_obj
properties.

setlunits SETIUNITS sets the 'iunits' property of the ao. ltpda_tf

setOunits SETOUNITS sets the 'ounits' property of the ao. ltpda_tf

created CREATED Returns a time object of the last ltpda_uoh
modification.

creator CREATOR Extract the creator(s) from the history. Itpda_uoh

index INDEX index into a 'ltpda_uoh' object array or ltpda_uoh

matrix. This properly captures the history.

setDescription SETDESCRIPTION sets the 'description’ property of ltpda_uoh
an ltpda_uoh object.

setName SETNAME Set the property 'name". ltpda_uoh

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_parfrac.htmlI[10/08/2009 16:34:50]

matlab:doc('ltpda_uoh/rebuild')
matlab:doc('parfrac')
matlab:doc('ltpda_obj/get')
matlab:doc('ltpda_obj/isprop')
matlab:doc('ltpda_tf/setIunits')
matlab:doc('ltpda_tf/setOunits')
matlab:doc('ltpda_uoh/created')
matlab:doc('ltpda_uoh/creator')
matlab:doc('ltpda_uoh/index')
matlab:doc('ltpda_uoh/setDescription')
matlab:doc('ltpda_uoh/setName')

parfrac Class (LTPDA Toolbox)

setProperties SETPROPERTIES set different properties of an ltpda_uoh
object.
string STRING writes a command string that can be used Itpda_uoh

to recreate the input object(s).

a Back to Top of Section

Internal
Methods Description Defined
in class

bsubmit BSUBMIT bsubmits the given collection of objects to Itpda_uo
an LTPDA Repository.

submit SUBMIT submits the given collection of objects to an Itpda_uo
LTPDA Repository.

update UPDATE updates the given object in an LTPDA ltpda_uo

Repository.

getlowerFreqg GETLOWERFREQ gets the frequency of the lowest parfrac
pole in the model.

getupperFreqg GETUPPERFREQ gets the frequency of the highest parfrac
pole in the model.

respCore RESPCORE returns the complex response of one parfrac
rational object.

a Back to Top of Section

Output

Methods Description Defined
in class

report REPORT generates an HTML report about the input ltpda_uoh

objects.

save SAVE overloads save operator for ltpda objects. ltpda_uoh

type TYPE converts the input objects to MATLAB functions. Itpda_uoh

char CHAR convert a parfrac object into a string. parfrac

display DISPLAY overloads display functionality for parfrac parfrac
objects.

a Back to Top of Section

Relational Operator

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_parfrac.htmlI[10/08/2009 16:34:50]

matlab:doc('ltpda_uoh/setProperties')
matlab:doc('ltpda_uoh/string')
matlab:doc('ltpda_uo/bsubmit')
matlab:doc('ltpda_uo/submit')
matlab:doc('ltpda_uo/update')
matlab:doc('parfrac/getlowerFreq')
matlab:doc('parfrac/getupperFreq')
matlab:doc('parfrac/respCore')
matlab:doc('ltpda_uoh/report')
matlab:doc('ltpda_uoh/save')
matlab:doc('ltpda_uoh/type')
matlab:doc('parfrac/char')
matlab:doc('parfrac/display')

parfrac Class (LTPDA Toolbox)

Methods Description Defined
in class

eq EQ overloads the == operator for Itpda objects. ltpda_obj

ne NE overloads the ~= operator for Itpda objects. ltpda_obj

a Back to Top of Section

Signal Processing

Methods Description Defined
in class
resp RESP returns the complex response of a transfer ltpda_tf

function as an Analysis Object.

a Back to Top of Section

pzmodel Class rational Class [#]

©OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_parfrac.htmlI[10/08/2009 16:34:50]

matlab:doc('ltpda_obj/eq')
matlab:doc('ltpda_obj/ne')
matlab:doc('ltpda_tf/resp')

rational Class (LTPDA Toolbox)

LTPDA Toolbox contents [€]

rational Class

Properties Properties of the class
Methods All Methods of the class ordered by category.
Examples Some constructor examples

a Back to Class descriptions

Properties

The LTPDA toolbox restrict access of the properties.
The get access is 'public’ and thus it is possible to get the values with the dot-command
(similar to structures).

For example:
val = obj.prop(2).prop;

The set access is 'protected’ and thus it is only possible to assign a value to a property with a
set-method.

For exam

obj2 = OB 1. setName(my name®) % This command creates a coBy of objl (objl ~= obj2)

obJ setName(my name®); % This command applies to o
Properties Description Defined

in class
b Numerator coefficients of the rational representation rational
den Denominator coefficients of the rational rational
representation

version CVS version string of the constructor rational
funits Input unit of a transfer function Itpda_tf
ounits Output unit of a transfer function ltpda_tf
hist History object associated with this object Itpda_uoh
description Description of the object ltpda_uoh
name Name of the object Itpda_uo

a Back to Top

Methods

H Constructor Constructor of this class H

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_rational.html[10/08/2009 16:34:56]

Helper

Internal

Output

Relational Operator
Signal Processing

rational Class (LTPDA Toolbox)

Helper methods only for internal usage

Internal methods only for internal usage

Output methods
Relational operator methods

Signal processing methods

4 Back to Top

Constructor
Methods Description
rebuild REBUILD rebuilds the input objects using the history.

rational

RATIONAL rational representation of a transfer
function.

a Back to Top of Section

Helper

Methods

get

ISprop

setlunits

setOunits

created

creator

index

setDescription SETDESCRIPTION sets the 'description' property of

setName

setProperties

string

Description

GET get a property of a object.

ISPROP tests if the given field is one of the object
properties.

SETIUNITS sets the 'iunits' property of the ao.
SETOUNITS sets the 'ounits' property of the ao.

CREATED Returns a time object of the last
modification.

CREATOR Extract the creator(s) from the history.
INDEX index into a 'ltpda_uoh' object array or
matrix. This properly captures the history.

an ltpda_uoh object.

SETNAME Set the property 'name".

SETPROPERTIES set different properties of an
object.

Defined
in class

ltpda_uoh

rational

Defined
in class

ltpda_obj

ltpda_obj

ltpda_tf
ltpda_tf

ltpda_uoh

ltpda_uoh

ltpda_uoh

ltpda_uoh

ltpda_uoh

ltpda_uoh

STRING writes a command string that can be used Itpda_uoh

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_rational.html[10/08/2009 16:34:56]

matlab:doc('ltpda_uoh/rebuild')
matlab:doc('rational')
matlab:doc('ltpda_obj/get')
matlab:doc('ltpda_obj/isprop')
matlab:doc('ltpda_tf/setIunits')
matlab:doc('ltpda_tf/setOunits')
matlab:doc('ltpda_uoh/created')
matlab:doc('ltpda_uoh/creator')
matlab:doc('ltpda_uoh/index')
matlab:doc('ltpda_uoh/setDescription')
matlab:doc('ltpda_uoh/setName')
matlab:doc('ltpda_uoh/setProperties')
matlab:doc('ltpda_uoh/string')

rational Class (LTPDA Toolbox)

to recreate the input object(s).

a Back to Top of Section

Internal
Methods Description Defined
in class

bsubmit BSUBMIT bsubmits the given collection of objects to Itpda_uo
an LTPDA Repository.

submit SUBMIT submits the given collection of objects to an Itpda_uo
LTPDA Repository.

update UPDATE updates the given object in an LTPDA ltpda_uo

Repository.

getlowerFreq GETLOWERFREQ gets the frequency of the lowest rational
pole in the model.

getupperFreq GETUPPERFREQ gets the frequency of the highest rational
pole in the model.

respCore RESPCORE returns the complex response of one rational
rational object.

a Back to Top of Section

Output
Methods Description Defined
in class
report REPORT generates an HTML report about the input ltpda_uoh
objects.
save SAVE overloads save operator for Itpda objects. ltpda_uoh
type TYPE converts the input objects to MATLAB functions. Itpda_uoh
char CHAR convert a rational object into a string. rational
display DISPLAY overloads display functionality for rational rational
objects.
a Back to Top of Section
Relational Operator
Methods Description Defined
in class

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_rational.html[10/08/2009 16:34:56]

matlab:doc('ltpda_uo/bsubmit')
matlab:doc('ltpda_uo/submit')
matlab:doc('ltpda_uo/update')
matlab:doc('rational/getlowerFreq')
matlab:doc('rational/getupperFreq')
matlab:doc('rational/respCore')
matlab:doc('ltpda_uoh/report')
matlab:doc('ltpda_uoh/save')
matlab:doc('ltpda_uoh/type')
matlab:doc('rational/char')
matlab:doc('rational/display')

rational Class (LTPDA Toolbox)

eq EQ overloads the == operator for Itpda objects. ltpda_obj

ne NE overloads the ~= operator for Itpda objects. ltpda_obj

a Back to Top of Section

Signal Processing

Methods Description Defined
in class
resp RESP returns the complex response of a transfer ltpda_tf

function as an Analysis Object.

a Back to Top of Section

parfrac Class timespan Class

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_rational.html[10/08/2009 16:34:56]

matlab:doc('ltpda_obj/eq')
matlab:doc('ltpda_obj/ne')
matlab:doc('ltpda_tf/resp')

timespan Class (LTPDA Toolbox)

LTPDA Toolbox contents [€]

timespan Class

Properties Properties of the class
Methods All Methods of the class ordered by category.
Examples Some constructor examples

a Back to Class descriptions

Properties

The LTPDA toolbox restrict access of the properties.
The get access is 'public’ and thus it is possible to get the values with the dot-command
(similar to structures).

For example:
val = obj.prop(2).prop;

The set access is 'protected’ and thus it is only possible to assign a value to a property with a
set-method.

obf2 ZL GBI setianeCCy nane®) i This comand creates o copy of obil (obil = obi2)
Properties Description Defined
in class
startT TIME object of the start time timespan
endT TIME object of the end time timespan
timeformat Tijme format of the start/end time objects timespan
timezone Timezone of the start/end time objects timespan
interval Interval string of the start/end time timespan
version CVS version string of the constructor timespan
hist History object associated with this object Itpda_uoh
description pDescription of the object ltpda_uoh
name Name of the object ltpda_uo

a Back to Top

Methods
[1

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_timespan.html[10/08/2009 16:35:02]

timespan Class (LTPDA Toolbox)

Constructor Constructor of this class

Helper Helper methods only for internal usage
Internal Internal methods only for internal usage
Qutput Output methods

Relational Operator Relational operator methods

a Back to Top
Constructor

Methods Description Defined
in class

rebuild REBUILD rebuilds the input objects using the history. Itpda_uoh

timespan TIMESPAN timespan object class constructor. timespan

a Back to Top of Section

Helper
Methods Description Defined
in class

get GET get a property of a object. ltpda_obj

isprop ISPROP tests if the given field is one of the object Itpda_obj
properties.

created CREATED Returns a time object of the last ltpda_uoh
modification.

creator CREATOR Extract the creator(s) from the history. Itpda_uoh

index INDEX index into a 'ltpda_uoh' object array or ltpda_uoh

matrix. This properly captures the history.

setDescription SETDESCRIPTION sets the 'description’ property of ltpda_uoh
an ltpda_uoh object.

setName SETNAME Set the property 'name’. ltpda_uoh

setProperties SETPROPERTIES set different properties of an ltpda_uoh
object.

string STRING writes a command string that can be used ltpda_uoh

to recreate the input object(s).
setEndT SETENDT Set the property 'endT". timespan

setStartT SETSTARTT Set the property 'startT'. timespan

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_timespan.html[10/08/2009 16:35:02]

matlab:doc('ltpda_uoh/rebuild')
matlab:doc('timespan')
matlab:doc('ltpda_obj/get')
matlab:doc('ltpda_obj/isprop')
matlab:doc('ltpda_uoh/created')
matlab:doc('ltpda_uoh/creator')
matlab:doc('ltpda_uoh/index')
matlab:doc('ltpda_uoh/setDescription')
matlab:doc('ltpda_uoh/setName')
matlab:doc('ltpda_uoh/setProperties')
matlab:doc('ltpda_uoh/string')
matlab:doc('timespan/setEndT')
matlab:doc('timespan/setStartT')

timespan Class (LTPDA Toolbox)

setTimeformat SETTIMEFORMAT Set the property 'timeformat'. timespan

setTimezone SETTIMEZONE Set the property 'timezone'. timespan

a Back to Top of Section
Internal

Methods Description Defined
in class

bsubmit BSUBMIT bsubmits the given collection of objects to an Itpda_uo
LTPDA Repository.

submit SUBMIT submits the given collection of objects to an Itpda_uo
LTPDA Repository.

update UPDATE updates the given object in an LTPDA ltpda_uo
Repository.

a Back to Top of Section

Output
Methods Description Defined
in class
report REPORT generates an HTML report about the input ltpda_uoh
objects.
save SAVE overloads save operator for Itpda objects. ltpda_uoh
type TYPE converts the input objects to MATLAB functions. Itpda_uoh

N
QD
=

CHAR convert a timespan object into a string. timespan

display DISPLAY overloads display functionality for timespan timespan
objects.

a Back to Top of Section

Relational Operator

Methods Description Defined
in class

eq EQ overloads the == operator for ltpda objects. ltpda_obj

ne NE overloads the ~= operator for Itpda objects. ltpda_obj

a Back to Top of Section

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_timespan.html[10/08/2009 16:35:02]

matlab:doc('timespan/setTimeformat')
matlab:doc('timespan/setTimezone')
matlab:doc('ltpda_uo/bsubmit')
matlab:doc('ltpda_uo/submit')
matlab:doc('ltpda_uo/update')
matlab:doc('ltpda_uoh/report')
matlab:doc('ltpda_uoh/save')
matlab:doc('ltpda_uoh/type')
matlab:doc('timespan/char')
matlab:doc('timespan/display')
matlab:doc('ltpda_obj/eq')
matlab:doc('ltpda_obj/ne')

timespan Class (LTPDA Toolbox)

rational Class plist Class

OLTP Team

http://www.lisa.aei-hannover.de/ltpda/usermanual/ug/class_desc_timespan.html[10/08/2009 16:35:02]

plist Class (LTPDA

LTPDA Too

Toolbox)

Ibox contents

plist Class

Properties
Methods

Examples

Properties of the class

All Methods of the class ordered by category.

Some constructor examples

a Back to Class descriptions

Properties

The LTPDA toolbox restrict access of the properties.
The get access is 'public’ and thus it is possible to get the values with the dot-command

(similar to s

tructures).

For example:
val = obj.prop(2).prop;

The set access is 'protected’ and thus it is only possible to assign a value to a property with a
set-